1,178 research outputs found
Perpetual emulation threshold of PT-symmetric Hamiltonians
We describe a technique to emulate a two-level \PT-symmetric spin
Hamiltonian, replete with gain and loss, using only the unitary dynamics of a
larger quantum system. This we achieve by embedding the two-level system in
question in a subspace of a four-level Hamiltonian. Using an \textit{amplitude
recycling} scheme that couples the levels exterior to the \PT-symmetric
subspace, we show that it is possible to emulate the desired behaviour of the
\PT-symmetric Hamiltonian without depleting the exterior, reservoir levels. We
are thus able to extend the emulation time indefinitely, despite the
non-unitary \PT dynamics. We propose a realistic experimental implementation
using dynamically decoupled magnetic sublevels of ultracold atoms.Comment: 15 pages, 8 figure
Gene therapy for B-cell lymphoma in a SCID mouse model using an immunoglobulin-regulated diphtheria toxin gene delivered by a novel adenovirus-polylysine conjugate
Synthetic clock transitions via continuous dynamical decoupling
Decoherence of quantum systems due to uncontrolled fluctuations of the
environment presents fundamental obstacles in quantum science. `Clock'
transitions which are insensitive to such fluctuations are used to improve
coherence, however, they are not present in all systems or for arbitrary system
parameters. Here, we create a trio of synthetic clock transitions using
continuous dynamical decoupling in a spin-1 Bose-Einstein condensate in which
we observe a reduction of sensitivity to magnetic field noise of up to four
orders of magnitude; this work complements the parallel work by Anderson et al.
(submitted, 2017). In addition, using a concatenated scheme, we demonstrate
suppression of sensitivity to fluctuations in our control fields. These
field-insensitive states represent an ideal foundation for the next generation
of cold atom experiments focused on fragile many-body phases relevant to
quantum magnetism, artificial gauge fields, and topological matter.Comment: 8 pages, 4 figures, Supplemental material
Muchas emergencias y aún más llamadas
Optimizar la distribuci´on y el despacho de los recursos
es un tema prioritario en la atenci´on a emergencias, por
lo que identificar las posibles llamadas que provienen de
un mismo evento resulta determinante para su correcta
atenci´on. Se analizar´a el problema tomando en cuenta
las caracter´ısticas de una llamada de emergencia y los
datos disponibles a partir de los cuales se pueden relacionar
distintos reportes y, mediante un modelo de regresi´on
log´ıstica, se encontrar´an criterios ´optimos para relacionar
dos reportes
Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway
Molecular conjugate vectors may be constructed that accomplish high efficiency gene transfer by the receptor-mediated endocytosis pathway. In order to mediate escape from lysosomal degradation, we have incorporated adenoviruses into the functional design of the conjugate. In doing so, however, we have introduced an additional ligand, which can bind to receptors on the cell surface, undermining the potential for cell specific targeting. To overcome this, we have treated the adenovirus with a monoclonal anti-fiber antibody, which renders the virus incapable of binding to its receptor. The result is a multi-functional molecular conjugate vector, which has preserved its binding specificity while at the same time being capable of preventing lysosomal degradation of endosome-internalized conjugate-DNA complexes. This finding indicates that adenoviral binding is not a prerequisite for adenoviral-mediated endosome disruption
Fourier transform spectroscopy of a spin-orbit coupled Bose gas
We describe a Fourier transform spectroscopy technique for directly measuring
band structures, and apply it to a spin-1 spin-orbit coupled Bose-Einstein
condensate. In our technique, we suddenly change the Hamiltonian of the system
by adding a spin-orbit coupling interaction and measure populations in
different spin states during the subsequent unitary evolution. We then
reconstruct the spin and momentum resolved spectrum from the peak frequencies
of the Fourier transformed populations. In addition, by periodically modulating
the Hamiltonian, we tune the spin-orbit coupling strength and use our
spectroscopy technique to probe the resulting dispersion relation. The
frequency resolution of our method is limited only by the coherent evolution
timescale of the Hamiltonian and can otherwise be applied to any system, for
example, to measure the band structure of atoms in optical lattice potentials
High-resolution study of a star-forming cluster in the Cep-A HW2 region
Due to its relatively small distance (725 pc), the Cepheus A East
star-forming region is an ideal laboratory to study massive star formation
processes. Based on its morphology, it has been suggested that the flattened
molecular gas distribution around the YSO HW2 may be a 350-AU-radius massive
protostellar disk. Goal of our work is to ascertain the nature of this
structure. We have employed the Plateau de Bure Interferometer to acquire
(sub-)arcsecond-resolution imaging of high-density and shock tracers, such as
methyl cyanide (CH3CN) and silicon monoxide (SiO), towards the HW2 position. On
the 1-arcsecond (about 725 AU) scale, the flattened distribution of molecular
gas around HW2 appears to be due to the projected superposition, on the plane
of the sky, of at least three protostellar objects, of which at least one is
powering a molecular outflow at a small angle with respect to the line of
sight. The presence of a protostellar disk around HW2 is not ruled out, but
such structure is likely to be detected on a smaller spatial scale, or using
different molecular tracers.Comment: 6 pages, 5 figures, accepted for publication in Astronomy &
Astrophysic
- …
