7,205 research outputs found

    Arsenic in the Water, Soil Bedrock, and Plants of the Ester Dome Area of Alaska

    Get PDF
    Concentrations of arsenic as large as 10 ppm (200 times the safe limit for drinking water) occur in the groundwater of a mineralized residential area near Fairbanks. Bedrock of the area contains 750 ppm As, primarily as arsenopyrite and scorodite. The oxygen-poor groundwater is enriched in As(III) and ferrous iron while the surface waters are iron free and contain less than 50 ppb As(V). Arsenic is removed from the water by coprecipitation with ferric hydroxide. Some iron-rich stream sediments contain as much as 1,400 ppm arsenic. The distribution of arsenic in the groundwater is controlled by the distribution of arsenic in the bedrock. The arsenic content of the B soil horizon over mineralized veins is about 150 ppm, while that over barren rock is 30 ppm. The vegetation over the veins is not significantly enriched in arsenic. Lettuce, radishes and tomatoes grown with arsenic-rich water (5 ppm) contain 16, 8 and 1 ppm As, respectively; these amounts are significantly greater than plants not treated with arsenic. Preliminary studies by state and federal health agencies show no detrimental effects on the health of persons drinking these arsenic-rich waters.The work upon which this publication is based was supported in part by funds provided by the Office of Water Research and Technology (Project B-037-ALAS, Agreement No. 14-34-0001-8056), U.S. Department of the Interior, Washington, D.C., as authorized by the Water Research and Development Act of 1978

    Extending the Globular Cluster System-Halo Mass Relation to the Lowest Galaxy Masses

    Full text link
    High mass galaxies, with halo masses M2001010MM_{200} \ge 10^{10} M_{\odot}, reveal a remarkable near-linear relation between their globular cluster (GC) system mass and their host galaxy halo mass. Extending this relation to the mass range of dwarf galaxies has been problematic due to the difficulty in measuring independent halo masses. Here we derive new halo masses based on stellar and HI gas kinematics for a sample of nearby dwarf galaxies with GC systems. We find that the GC system mass--halo mass relation for galaxies populated by GCs holds from halo masses of M2001014MM_{200} \sim 10^{14} M_{\odot} down to below M200M_{200} 109M\sim 10^9 M_{\odot}, although there is a substantial increase in scatter towards low masses. In particular, three well-studied ultra diffuse galaxies, with dwarf-like stellar masses, reveal a wide range in their GC-to-halo mass ratios. We compare our GC system--halo mass relation to the recent model of El Badry et al., finding that their fiducial model does not reproduce our data in the low mass regime. This may suggest that GC formation needs to be more efficient than assumed in their model, or it may be due to the onset of stochastic GC occupation in low mass halos. Finally, we briefly discuss the stellar mass-halo mass relation for our low mass galaxies with GCs, and we suggest some nearby dwarf galaxies for which searches for GCs may be fruitful.Comment: 16 pages, 5 figures, accepted for publication in MNRA

    Zero Temperature Thermodynamics of Asymmetric Fermi Gases at Unitarity

    Full text link
    The equation of state of a dilute two-component asymmetric Fermi gas at unitarity is subject to strong constraints, which affect the spatial density profiles in atomic traps. These constraints require the existence of at least one non-trivial partially polarized (asymmetric) phase. We determine the relation between the structure of the spatial density profiles and the T=0 equation of state, based on the most accurate theoretical predictions available. We also show how the equation of state can be determined from experimental observations.Comment: 10 pages and 7 figures. (Minor changes to correspond with published version.

    Optical properties of high quality Cu2ZnSnSe4 thin films

    Get PDF
    Cu2ZnSnSe4 thin films, fabricated on bare or molybdenum coated glass substrates by magnetron sputtering and selenisation, were studied by a range of techniques. Photoluminescence spectra reveal an excitonic peak and two phonon replicas of a donor-acceptor pair (DAP) recombination. Its acceptor and donor ionisation energies are 27 and 7 meV, respectively. This demonstrates that high-quality Cu2ZnSnSe4 thin films can be fabricated. An experimental value for the longitudinal optical phonon energy of 28 meV was estimated. The band gap energy of 1.01 eV at room temperature was determined using optical absorption spectr

    Anastrozole-Induced Carpal Tunnel Syndrome: Results From the International Breast Cancer Intervention Study II Prevention Trial

    Get PDF
    Supported in part by Cancer Research UK (C569/A5032) and the National Health and Medical Research Council Australia (GNT300755, GNT569213), and in part by AstraZeneca, who also provided anastrozole and matching placebo. This study was sponsored by Queen Mary University of London, London, United Kingdom

    WMAP Haze: Directly Observing Dark Matter?

    Full text link
    In this paper we show that dark matter in the form of dense matter/antimatter nuggets could provide a natural and unified explanation for several distinct bands of diffuse radiation from the core of the Galaxy spanning over 12 orders of magnitude in frequency. We fix all of the phenomenological properties of this model by matching to x-ray observations in the keV band, and then calculate the unambiguously predicted thermal emission in the microwave band, at frequencies smaller by 10 orders of magnitude. Remarkably, the intensity and spectrum of the emitted thermal radiation are consistent with--and could entirely explain--the so-called "WMAP haze": a diffuse microwave excess observed from the core of our Galaxy by the Wilkinson Microwave Anisotropy Probe (WMAP). This provides another strong constraint of our proposal, and a remarkable nontrivial validation. If correct, our proposal identifies the nature of the dark matter, explains baryogenesis, and provides a means to directly probe the matter distribution in our Galaxy by analyzing several different types of diffuse emissions.Comment: 16 pages, REVTeX4. Updated to correspond with published version: includes additional appendices discussing finite-size effect

    Participant-Reported Symptoms and Their Effect on Long-Term Adherence in the International Breast Cancer Intervention Study I (IBIS I)

    Get PDF
    Purpose: To assess the role of participant-reported symptoms on long-term adherence to preventive therapy in the United Kingdom sample of the International Breast Cancer Intervention Study (IBIS-I). IBIS-I was a randomized controlled trial that investigated the effectiveness of tamoxifen in reducing the risk of breast cancer among women at increased risk of the disease. Participants and Methods: Women were randomly assigned to tamoxifen versus placebo (20 mg/day; n = 4,279). After 456 exclusions, 3,823 women were included in this analysis. Adherence (< 4.5 years or ≥ 4.5 years) was calculated using data from six monthly clinical visits. Analyses were adjusted for age, Tyrer-Cuzick risk, smoking, use of hormone replacement therapy, menopausal status, baseline menopausal symptoms, and treatment. Results: Overall, 69.7% of women were adherent for at least 4.5 years (tamoxifen: 65.2% v placebo: 74.0%; P .05). In both treatment arms, we observed significant trends for lower adherence with increasing severity for all symptoms (P < .01) except headaches (P = .054). Conclusion: In the IBIS-I trial, experiencing predefined symptoms in the first 6 months reduced long-term adherence. Effects were similar between treatment arms, suggesting that women were attributing age-related symptoms to preventive therapy. Interventions were required to support symptom management

    Indeterminacy and instability in Petschek reconnection

    Get PDF
    We explain two puzzling aspects of Petschek's model for fast reconnection. One is its failure to occur in plasma simulations with uniform resistivity. The other is its inability to provide anything more than an upper limit for the reconnection rate. We have found that previously published analytical solutions based on Petschek's model are structurally unstable if the electrical resistivity is uniform. The structural instability is associated with the presence of an essential singularity at the X-line that is unphysical. By requiring that such a singularity does not exist, we obtain a formula that predicts a specific rate of reconnection. For uniform resistivity, reconnection can only occur at the slow, Sweet-Parker rate. For nonuniform resistivity, reconnection can occur at a much faster rate provided that the resistivity profile is not too flat near the X-line. If this condition is satisfied, then the scale length of the nonuniformity determines the reconnection rate
    corecore