419 research outputs found
Quantum Coherence Oscillations in Antiferromagnetic Chains
Macroscopic quantum coherence oscillations in mesoscopic antiferromagnets may
appear when the anisotropy potential creates a barrier between the
antiferromagnetic states with opposite orientations of the Neel vector. This
phenomenon is studied for the physical situation of the nuclear spin system of
eight Xe atoms arranged on a magnetic surface along a chain. The oscillation
period is calculated as a function of the chain constant. The environmental
decoherence effects at finite temperature are accounted assuming a dipole
coupling between the spin chain and the fluctuating magnetic field of the
surface. The numerical calculations indicate that the oscillations are damped
by a rate , where is the number of spins and is
the relaxation time of a single spin.Comment: 10 pages, Latex, two postscript figures; submitted to Phys. Rev.
Microscopic Foundation of Nonextensive Statistics
Combination of the Liouville equation with the q-averaged energy leads to a microscopic framework for nonextensive q-thermodynamics. The
resulting von Neumann equation is nonlinear: . In spite
of its nonlinearity the dynamics is consistent with linear quantum mechanics of
pure states. The free energy is a stability function for the
dynamics. This implies that q-equilibrium states are dynamically stable. The
(microscopic) evolution of is reversible for any q, but for
the corresponding macroscopic dynamics is irreversible.Comment: revte
Phase Transition for Infinite Systems of Spiking Neurons
We prove the existence of a phase transition for a stochastic model of interacting neurons. The spiking activity of each neuron is represented by a point process having rate 1 whenever its membrane potential is larger than a threshold value. This membrane potential evolves in time and integrates the spikes of all presynaptic neurons since the last spiking time of the neuron. When a neuron spikes, its membrane potential is reset to 0 and simultaneously, a constant value is added to the membrane potentials of its postsynaptic neurons. Moreover, each neuron is exposed to a leakage effect leading to an abrupt loss of potential occurring at random times driven by an independent Poisson point process of rate γ> 0. For this process we prove the existence of a value γc such that the system has one or two extremal invariant measures according to whether γ> γc or not.Fil: Ferrari, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Galves, Antonio. Universidade de Sao Paulo; BrasilFil: Grigorescu, I.. University of Miami; Estados UnidosFil: Löcherbach, E.. Université Paris Seine; Franci
Dissociation of virtual photons in events with a leading proton at HERA
The ZEUS detector has been used to study dissociation of virtual photons in
events with a leading proton, gamma^* p -> X p, in e^+p collisions at HERA. The
data cover photon virtualities in two ranges, 0.03<Q^2<0.60 GeV^2 and 2<Q^2<100
GeV^2, with M_X>1.5 GeV, where M_X is the mass of the hadronic final state, X.
Events were required to have a leading proton, detected in the ZEUS leading
proton spectrometer, carrying at least 90% of the incoming proton energy. The
cross section is presented as a function of t, the squared four-momentum
transfer at the proton vertex, Phi, the azimuthal angle between the positron
scattering plane and the proton scattering plane, and Q^2. The data are
presented in terms of the diffractive structure function, F_2^D(3). A
next-to-leading-order QCD fit to the higher-Q^2 data set and to previously
published diffractive charm production data is presented
Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA
Differential inclusive jet cross sections in neutral current deep inelastic
ep scattering have been measured with the ZEUS detector. Three phase-space
regions have been selected in order to study parton dynamics where the effects
of BFKL evolution might be present. The measurements have been compared to the
predictions of leading-logarithm parton shower Monte Carlo models and
fixed-order perturbative QCD calculations. In the forward region, QCD
calculations at order alpha_s^1 underestimate the data up to an order of
magnitude at low x. An improved description of the data in this region is
obtained by including QCD corrections at order alpha_s^2, which account for the
lowest-order t-channel gluon-exchange diagrams, highlighting the importance of
such terms in parton dynamics at low x.Comment: 25 pages, 4 figure
A new durophagous scincomorphan lizard genus from the Late Cretaceous Iharkút locality (Hungary, Bakony Mts)
- …
