271 research outputs found

    The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body

    Get PDF
    KAR1 has been identified as an essential gene which is involved in karyogamy of mating yeast cells and in spindle pole body duplication of mitotic cells (Rose, M. D., and G. R. Fink. 1987. Cell. 48:1047-1060). We investigated the cell cycle-dependent localization of the Kar1 protein (Kar1p) and its interaction with other SPB components. Kar1p is associated with the spindle pole body during the entire cell cycle of yeast. Immunoelectron microscopic studies with anti-Kar1p antibodies or with the monoclonal antibody 12CA5 using an epitope-tagged, functional Kar1p revealed that Kar1p is associated with the half bridge or the bridge of the spindle pole body. Cdc31p, a Ca(2+)-binding protein, was previously identified as the first component of the half bridge of the spindle pole body (Spang, A., I. Courtney, U. Fackler, M. Matzner, and E. Schiebel. 1993. J. Cell Biol. 123:405-416). Using an in vitro assay we demonstrate that Cdc31p specifically interacts with a short sequence within the carboxyl terminal half of Kar1p. The potential Cdc31p-binding sequence of Kar1p contains three acidic amino acids which are not found in calmodulin-binding peptides, explaining the different substrate specificities of Cdc31p and calmodulin. Cdc31p was also able to bind to the carboxy terminus of Nuflp/Spc110p, another component of the SPB (Kilmartin, J. V., S. L. Dyos, D. Kershaw, and J. T. Finch. 1993. J. Cell Biol. 123:1175-1184). The association of Kar1p with the spindle pole body was independent of Cdc31p. Cdc31p, on the other hand, was not associated with SPBs of kar1 cells

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal

    Inverse proximity effect and influence of disorder on triplet supercurrents in strongly spin-polarized ferromagnets

    Get PDF
    We discuss the Josephson effect in strongly spin-polarized ferromagnets where triplet correlations are induced by means of spin-active interface scattering, extending our earlier work [Phys. Rev. Lett. 102, 227005 (2009)] by including impurity scattering in the ferromagnetic bulk and the inverse proximity effect in a fully self-consistent way. Our quasiclassical approach accounts for the differences of Fermi momenta and Fermi velocities between the two spin bands of the ferromagnet, and thereby overcomes an important short-coming of previous work within the framework of Usadel theory. We show that non-magnetic disorder in conjunction with spin-dependent Fermi velocities may induce a reversal of the spin-current as a function of temperature.Comment: 12 pages, 9 figure

    Tumour stroma-derived lipocalin-2 promotes breast cancer metastasis

    Get PDF
    Tumour cell-secreted factors skew infiltrating immune cells towards a tumour-supporting phenotype, expressing pro-tumourigenic mediators. However, the influence of lipocalin-2 (Lcn2) on the metastatic cascade in the tumour micro-environment is still not clearly defined. Here, we explored the role of stroma-derived, especially macrophage-released, Lcn2 in breast cancer progression. Knockdown studies and neutralizing antibody approaches showed that Lcn2 contributes to the early events of metastasis in vitro. The release of Lcn2 from macrophages induced an epithelial–mesenchymal transition programme in MCF-7 breast cancer cells and enhanced local migration as well as invasion into the extracellular matrix, using a three-dimensioanl (3D) spheroid model. Moreover, a global Lcn2 deficiency attenuated breast cancer metastasis in both the MMTV–PyMT breast cancer model and a xenograft model inoculating MCF-7 cells pretreated with supernatants from wild-type and Lcn2-knockdown macrophages. To dissect the role of stroma-derived Lcn2, we employed an orthotopic mammary tumour mouse model. Implantation of wild-type PyMT tumour cells into Lcn2-deficient mice left primary mammary tumour formation unaltered, but specifically reduced tumour cell dissemination into the lung. We conclude that stroma-secreted Lcn2 promotes metastasis in vitro and in vivo, thereby contributing to tumour progression. Our study highlights the tumourigenic potential of stroma-released Lcn2 and suggests Lcn2 as a putative therapeutic target

    An isotopic effect in phi photoproduction at a few GeV

    Full text link
    A distinct isotopic effect in phi photoproduction at 2-5 GeV region is identified by examining the production amplitudes due to Pomeron-exchange and meson-exchange mechanisms. This effect is mainly caused by the pi-eta interference constrained by SU(3) symmetry and the isotopic structure of the gamma NN coupling in the direct phi-radiation amplitude. It can be tested experimentally by measuring differences in the polarization observables between the gamma-p and gamma-n reactions.Comment: 11 pages, 6 figure

    The Glauber model and the heavy ion reaction cross section

    Get PDF
    We reexamine the Glauber model and calculate the total reaction cross section as a function of energy in the low and intermediate energy range, where many of the corrections in the model, are effective. The most significant effect in this energy range is by the modification of the trajectory due to the Coulomb field. The modification in the trajectory due to nuclear field is also taken into account in a self consistent way. The energy ranges in which particular corrections are effective, are quantified and it is found that when the center of mass energy of the system becomes 30 times the Coulomb barrier, none of the trajectory modification to the Glauber model is really required. The reaction cross sections for light and heavy systems, right from near coulomb barrier to intermediate energies have been calculated. The exact nuclear densities and free nucleon-nucleon (NN) cross sections have been used in the calculations. The center of mass correction which is important for light systems, has also been taken into account. There is an excellent agreement between the calculations with the modified Glauber model and the experimental data. This suggests that the heavy ion reactions in this energy range can be explained by the Glauber model in terms of free NN cross sections without incorporating any medium modification.Comment: RevTeX, 21 pages including 9 Postscript figures, submitted to Phys. Rev.

    Quasi-Elastic Scattering in the Inclusive (3^3He, t) Reaction

    Get PDF
    The triton energy spectra of the charge-exchange 12^{12}C(3^3He,t) reaction at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out region. Considering that this region is mainly populated by the charge-exchange of a proton in 3^3He with a neutron in the target nucleus and the final proton going in the continuum, the cross-sections are written in the distorted-wave impulse approximation. The t-matrix for the elementary exchange process is constructed in the DWBA, using one pion- plus rho-exchange potential for the spin-isospin nucleon- nucleon potential. This t-matrix reproduces the experimental data on the elementary pn \rightarrow np process. The calculated cross-sections for the 12^{12}C(3^3He,t) reaction at 2o2^o to 7o7^o triton emission angle are compared with the corresponding experimental data, and are found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at [email protected], submitted to Phy.Rev.

    Role of Vector Mesons in High-Q^2 Lepton-Nucleon Scattering

    Full text link
    The possible role played by vector mesons in inclusive deep inelastic lepton-nucleon scattering is investigated. In the context of the convolution model, we calculate self-consistently the scaling contribution to the nucleon structure function using the formalism of time-ordered perturbation theory in the infinite momentum frame. Our results indicate potentially significant effects only when the vector meson---nucleon form factor is very hard. Agreement with the experimental antiquark distributions, however, requires relatively soft form factors for the πN\pi N, ρN\rho N and ωN\omega N vertices.Comment: 22 pages, 9 figures (available upon request); accepted for publication in Phys.Rev.D, ADP-92-197/T12
    corecore