40,235 research outputs found
Spinor Bose Condensates in Optical Traps
In an optical trap, the ground state of spin-1 Bosons such as Na,
K, and Rb can be either a ferromagnetic or a "polar" state,
depending on the scattering lengths in different angular momentum channel. The
collective modes of these states have very different spin character and spatial
distributions. While ordinary vortices are stable in the polar state, only
those with unit circulation are stable in the ferromagnetic state. The
ferromagnetic state also has coreless (or Skyrmion) vortices like those of
superfluid He-A. Current estimates of scattering lengths suggest that the
ground states of Na and Rb condensate are a polar state and a
ferromagnetic state respectively.Comment: 11 pages, no figures. email : [email protected]
Multiple Radial Cool Molecular Filaments in NGC 1275
We have extended our previous observation (Lim et al. 2008) of NGC1275
covering a central radius of ~10kpc to the entire main body of cool molecular
gas spanning ~14kpc east and west of center. We find no new features beyond the
region previously mapped, and show that all six spatially-resolved features on
both the eastern and western sides (three on each side) comprise radially
aligned filaments. Such radial filaments can be most naturally explained by a
model in which gas deposited "upstream" in localized regions experiencing an
X-ray cooling flow subsequently free falls along the gravitational potential of
PerA, as we previously showed can explain the observed kinematics of the two
longest filaments. All the detected filaments coincide with locally bright
Halpha features, and have a ratio in CO(2-1) to Halpha luminosity of ~1e-3; we
show that these filaments have lower star formation efficiencies than the
nearly constant value found for molecular gas in nearby normal spiral galaxies.
On the other hand, some at least equally luminous Halpha features, including a
previously identified giant HII region, show no detectable cool molecular gas
with a corresponding ratio at least a factor of ~5 lower; in the giant HII
region, essentially all the pre-existing molecular gas may have been converted
to stars. We demonstrate that all the cool molecular filaments are
gravitationally bound, and without any means of support beyond thermal pressure
should collapse on timescales ~< 1e6yrs. By comparison, as we showed previously
the two longest filaments have much longer dynamical ages of ~1e7yrs. Tidal
shear may help delay their collapse, but more likely turbulent velocities of at
least a few tens km/s or magnetic fields with strengths of at least several
~10uG are required to support these filaments.Comment: 52 pages, 11 figures. Accepted to Ap
- …
