545 research outputs found

    Thermally activated Hall creep of flux lines from a columnar defect

    Full text link
    We analyse the thermally activated depinning of an elastic string (line tension ϵ\epsilon) governed by Hall dynamics from a columnar defect modelled as a cylindrical potential well of depth V0V_{0} for the case of a small external force F.F. An effective 1D field Hamiltonian is derived in order to describe the 2D string motion. At high temperatures the decay rate is proportional to F5/2T1/2exp[F0/FU(F)/T],F^{{5}/{2}}T^{-{1}/{2}} \exp{\left [{F_{0}}/{F}-{U(F)}/{T}\right ]}, with F0F_{0} a constant of order of the critical force and U(F) \sim{\left ({\epsilon V_{0}})}^{{1}/{2}}{V_{0}/{F}} the activation energy. The results are applied to vortices pinned by columnar defects in superclean superconductors.Comment: 12 pages, RevTeX, 2 figures inserte

    Free-energy distribution functions for the randomly forced directed polymer

    Full text link
    We study the 1+11+1-dimensional random directed polymer problem, i.e., an elastic string ϕ(x)\phi(x) subject to a Gaussian random potential V(ϕ,x)V(\phi,x) and confined within a plane. We mainly concentrate on the short-scale and finite-temperature behavior of this problem described by a short- but finite-ranged disorder correlator U(ϕ)U(\phi) and introduce two types of approximations amenable to exact solutions. Expanding the disorder potential V(ϕ,x)V0(x)+f(x)ϕ(x)V(\phi,x) \approx V_0(x) + f(x) \phi(x) at short distances, we study the random force (or Larkin) problem with V0(x)=0V_0(x) = 0 as well as the shifted random force problem including the random offset V0(x)V_0(x); as such, these models remain well defined at all scales. Alternatively, we analyze the harmonic approximation to the correlator U(ϕ)U(\phi) in a consistent manner. Using direct averaging as well as the replica technique, we derive the distribution functions PL,y(F){\cal P}_{L,y}(F) and PL(F){\cal P}_L(F) of free energies FF of a polymer of length LL for both fixed (ϕ(L)=y\phi(L) = y) and free boundary conditions on the displacement field ϕ(x)\phi(x) and determine the mean displacement correlators on the distance LL. The inconsistencies encountered in the analysis of the harmonic approximation to the correlator are traced back to its non-spectral correlator; we discuss how to implement this approximation in a proper way and present a general criterion for physically admissible disorder correlators U(ϕ)U(\phi).Comment: 16 pages, 5 figure

    Metastability of (d+n)-dimensional elastic manifolds

    Full text link
    We investigate the depinning of a massive elastic manifold with dd internal dimensions, embedded in a (d+n)(d+n)-dimensional space, and subject to an isotropic pinning potential V(u)=V(u).V({\bf u})=V(|{\bf u}|). The tunneling process is driven by a small external force F.{\bf F}. We find the zero temperature and high temperature instantons and show that for the case 1d61\le d\le 6 the problem exhibits a sharp transition from quantum to classical behavior: At low temperatures T<TcT<T_{c} the Euclidean action is constant up to exponentially small corrections, while for T>Tc,T> T_{c}, SEucl(d,T)/=U(d)/T.{S_{\rm Eucl}(d,T)}/{\hbar} = {U(d)}/{T}. The results are universal and do not depend on the detailed shape of the trapping potential V(u)V({\bf u}). Possible applications of the problem to the depinning of vortices in high-TcT_{c} superconductors and nucleation in dd-dimensional phase transitions are discussed. In addition, we determine the high-temperature asymptotics of the preexponential factor for the (1+1)(1+1)-dimensional problem.Comment: RevTeX, 10 pages, 3 figures inserte

    Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'

    Get PDF
    The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved

    Quantum depinning of a pancake-vortex from a columnar defect

    Full text link
    We consider the problem of the depinning of a weakly driven (FFcF\ll F_{c}) pancake vortex from a columnar defect in a Josephson-coupled superconductor, where FF denotes the force acting on the vortex (FcF_{c} is the critical force). The dynamics of the vortex is supposed to be of the Hall type. The Euclidean action SEucl(T)S_{Eucl}(T) is calculated in the entire temperature range; the result is universal and does not depend on the detailed form of the pinning potential. We show that the transition from quantum to classical behavior is second-order like with the temperature TcT_{c} of the transition scaling like F4/3.F^{{4}/{3}}. Special attention is paid to the regime of applicability of our results, in particular, the influence of the large vortex mass appearing in the superclean limit is discussed.Comment: 11 pages, RevTeX, 4 figures inserte

    Metastability in Josephson transmission lines

    Full text link
    Thermal activation and macroscopic quantum tunneling in current-biased discrete Josephson transmission lines are studied theoretically. The degrees of freedom under consideration are the phases across the junctions which are coupled to each other via the inductances of the system. The resistively shunted junctions that we investigate constitute a system of N interacting degrees of freedom with an overdamped dynamics. We calculate the decay rate within exponential accuracy as a function of temperature and current. Slightly below the critical current, the decay from the metastable state occurs via a unique ("rigid") saddlepoint solution of the Euclidean action describing the simultaneous decay of the phases in all the junctions. When the current is reduced, a crossover to a regime takes place, where the decay occurs via an "elastic" saddlepoint solution and the phases across the junctions leave the metastable state one after another. This leads to an increased decay rate compared with the rigid case both in the thermal and the quantum regime. The rigid-to-elastic crossover can be sharp or smooth analogous to first- or second- order phase transitions, respectively. The various regimes are summarized in a current-temperature decay diagram.Comment: 11 pages, RevTeX, 3 PS-figures, revised versio

    Exact free energy distribution function of a randomly forced directed polymer

    Full text link
    We study the elastic (1+1)-dimensional string subject to a random gaussian potential on scales smaller than the correlation radius of the disorder potential (Larkin problem). We present an exact calculation of the probability function P[F(u,L)]{\cal P} [F(u,L)] for the free energy FF of a string starting at (0,0)(0,0) and ending at (u,L)(u,L). The function P(F){\cal P}(F) is strongly asymmetric, with the left tail decaying exponentially (lnP(F)F\ln {\cal P}(F\to-\infty)\propto F) and the right tail vanishing as lnP(F+)F3\ln {\cal P}(F\to +\infty)\propto -F^{3}. Our analysis defines a strategy for future attacks on this class of problems.Comment: RevTeX, 4 pages, 1 figure inserte

    Periodic Bounce for Nucleation Rate at Finite Temperature in Minisuperspace Models

    Get PDF
    The periodic bounce configurations responsible for quantum tunneling are obtained explicitly and are extended to the finite energy case for minisuperspace models of the Universe. As a common feature of the tunneling models at finite energy considered here we observe that the period of the bounce increases with energy monotonically. The periodic bounces do not have bifurcations and make no contribution to the nucleation rate except the one with zero energy. The sharp first order phase transition from quantum tunneling to thermal activation is verified with the general criterions.Comment: 17 pages, 5 postscript figures include

    Fragility of the Free-Energy Landscape of a Directed Polymer in Random Media

    Full text link
    We examine the sensitiveness of the free-energy landscape of a directed polymer in random media with respect to various kinds of infinitesimally weak perturbation including the intriguing case of temperature-chaos. To this end, we combine the replica Bethe ansatz approach outlined in cond-mat/0112384, the mapping to a modified Sinai model and numerically exact calculations by the transfer-matrix method. Our results imply that for all the perturbations under study there is a slow crossover from a weakly perturbed regime where rare events take place to a strongly perturbed regime at larger length scales beyond the so called overlap length where typical events take place leading to chaos, i.e. a complete reshuffling of the free-energy landscape. Within the replica space, the evidence for chaos is found in the factorization of the replicated partition function induced by infinitesimal perturbations. This is the reflex of explicit replica symmetry breaking.Comment: 29 pages, Revtex4, ps figure
    corecore