2,024 research outputs found
Characterization of porcine endogenous retrovirus expression in neonatal and adult pig pancreatic islets
BACKGROUND: Pig islets represent an alternative to the current modes of treatment for patients with diabetes. However, the concerns over pathogen transmission including that of PERV limit their immediate, widespread usage in humans. It has been previously demonstrated that PERV copy number and particularly expression levels can vary considerably between individuals and within different tissues of a single animal. In general, expression levels have been found to be particularly low in the pancreas compared to other porcine tissues suggesting a reduced risk associated with the use of this tissue. Data regarding this crucial aspect, however, remain limited and little is known about PERV status of islets themselves, which represent the final product to be transplanted. In addition, comparative analysis of the PERV status of neonatal piglets with adults is important as they are increasingly considered as potential islet donors for xenotransplantation.
METHODS: Tissue samples from 51 neonatal piglets (age between 14 and 21 days) and 29 adult pigs were collected from Belgian landrace pigs used for pancreas procurement and islet isolation. Tissue biopsies were used to extract DNA for PERV copy number quantification by qPCR and RNA for PERV expression by qRT-PCR.
RESULTS: As expected, PERV expression demonstrated great variation and was significantly lower in pancreas compared to other tissues. More importantly, PERV RNA expression was found to be specifically enriched in pancreatic islets reaching values similar to those found in other tissues such as liver and kidney. Interestingly, this expression was not coupled with the detection of reverse transcriptase in islet cultures or indeed detection of PERV virus. Lung, spleen, and lymph node consistently showed the highest levels of PERV expression. Comparison of PERV in neonatal and adult pigs showed that copy number did not vary significantly from birth to adulthood. PERV expression on the other hand was significantly lower in neonatal pig islets compared to adult islets and did not increase over the period of culture.
CONCLUSION: Our study confirms the low level of PERV expression in whole pancreas in a large population of both neonatal and adult pigs (n=80). The level of PERV expression was however higher in the endocrine tissue than in the exocrine cells. There was no correlation between PERV status in donor PBMCs and islet cells, and no evidence of active replication in in vitro regardless of PERV expression in islet cells. Moreover, neonatal pig islets were found to have significantly lower PERV expression compared to adult islets. Neonatal islets have been suggested as the best choice for xenotransplantation in terms of economic and procurement considerations; the PERV status reported here would also potentially support their use
Evidence for a Novel Reaction Mechanism of a Prompt Shock-Induced Fission Following the Fusion of 78Kr and 40Ca Nuclei at E/A =10 MeV
An analysis of experimental data from the inverse-kinematics ISODEC
experiment on 78Kr+40Ca reaction at a bombarding energy of 10 AMeV has revealed
signatures of a hitherto unknown reaction mechanism, intermediate between the
classical damped binary collisions and fusion-fission, but also substantially
different from what is being termed in the literature as fast fission or quasi
fission. These signatures point to a scenario where the system fuses
transiently while virtually equilibrating mass asymmetry and energy and, yet,
keeping part of the energy stored in a collective shock-imparted and, possibly,
angular momentum bearing form of excitation. Subsequently the system fissions
dynamically along the collision or shock axis with the emerging fragments
featuring a broad mass spectrum centered around symmetric fission, relative
velocities somewhat higher along the fission axis than in transverse direction,
and virtually no intrinsic spin. The class of massasymmetric fission events
shows a distinct preference for the more massive fragments to proceed along the
beam direction, a characteristic reminiscent of that reported earlier for
dynamic fragmentation of projectile-like fragments alone and pointing to the
memory of the initial mass and velocity distribution.Comment: 5 PAGES, 6 FIGURE
Massive stars in massive clusters - IV. Disruption of clouds by momentum-driven winds
We examine the effect of momentum-driven OB-star stellar winds on a parameter space of simulated turbulent giant molecular clouds using smoothed particle hydrodynamic simulations. By comparison with identical simulations in which ionizing radiation was included instead of winds, we show that momentum-driven winds are considerably less effective in disrupting their host clouds than are H ii regions. The wind bubbles produced are smaller and generally smoother than the corresponding ionization-driven bubbles. Winds are roughly as effective in destroying the very dense gas in which the O stars are embedded, and thus shutting down the main regions of star-forming activity in the model clouds. However, their influence falls off rapidly with distance from the sources, so they are not as good at sweeping up dense gas and triggering star formation further out in the clouds. As a result, their effect on the star formation rate and efficiency is generally more negative than that of ionization, if they exert any effect at all.Peer reviewe
Effect of floor type on the performance, physiological and behavioural responses of finishing beef steers
peer-reviewedBackground:The study objective was to investigate the effect of bare concrete slats (Control), two types of mats [(Easyfix mats (mat 1) and Irish Custom Extruder mats (mat 2)] fitted on top of concrete slats, and wood-chip to simulate deep bedding (wood-chip placed on top of a plastic membrane overlying the concrete slats) on performance, physiological and behavioral responses of finishing beef steers. One-hundred and forty-four finishing steers (503 kg; standard deviation 51.8 kg) were randomly assigned according to their breed (124 Continental cross and 20 Holstein–Friesian) and body weight to one of four treatments for 148 days. All steers were subjected to the same weighing, blood sampling (jugular venipuncture), dirt and hoof scoring pre study (day 0) and on days 23, 45, 65, 86, 107, 128 and 148 of the study. Cameras were fitted over each pen for 72 h recording over five periods and subsequent 10 min sampling scans were analysed.
Results: Live weight gain and carcass characteristics were similar among treatments. The number of lesions on the hooves of the animals was greater (P < 0.05) on mats 1 and 2 and wood-chip treatments compared with the animals on the slats. Dirt scores were similar for the mat and slat treatments while the wood-chip treatment had greater dirt scores. Animals housed on either slats or wood-chip had similar lying times. The percent of animals lying was greater for animals housed on mat 1 and mat 2 compared with those housed on concrete slats and wood chips. Physiological variables showed no significant difference among treatments.
Conclusions:
In this exploratory study, the performance or welfare of steers was not adversely affected by slats, differing mat types or wood-chip as underfoot material
Negative Effect of Smoking on the Performance of the QuantiFERON TB Gold in Tube Test.
False negative and indeterminate Interferon Gamma Release Assay (IGRA) results are a well documented problem. Cigarette smoking is known to increase the risk of tuberculosis (TB) and to impair Interferon-gamma (IFN-γ) responses to antigenic challenge, but the impact of smoking on IGRA performance is not known. The aim of this study was to evaluate the effect of smoking on IGRA performance in TB patients in a low and high TB prevalence setting respectively. Patients with confirmed TB from Denmark (DK, n = 34; 20 smokers) and Tanzania (TZ, n = 172; 23 smokers) were tested with the QuantiFERON-TB Gold In tube (QFT). Median IFN-γ level in smokers and non smokers were compared and smoking was analysed as a risk factor for false negative and indeterminate QFT results. Smokers from both DK and TZ had lower IFN-γ antigen responses (median 0.9 vs. 4.2 IU/ml, p = 0.04 and 0.4 vs. 1.6, p < 0.01), less positive (50 vs. 86%, p = 0.03 and 48 vs. 75%, p < 0.01) and more false negative (45 vs. 0%, p < 0.01 and 26 vs. 11%, p = 0.04) QFT results. In Tanzanian patients, logistic regression analysis adjusted for sex, age, HIV and alcohol consumption showed an association of smoking with false negative (OR 17.1, CI: 3.0-99.1, p < 0.01) and indeterminate QFT results (OR 5.1, CI: 1.2-21.3, p = 0.02). Cigarette smoking was associated with false negative and indeterminate IGRA results in both a high and a low TB endemic setting independent of HIV status
Charged particle decay of hot and rotating Mo nuclei in fusion-evaporation reactions
A study of fusion-evaporation and (partly) fusion-fission channels for the
Mo compound nucleus, produced at different excitation energies in the
reaction Ti + Ca at 300, 450 and 600 MeV beam energies, is
presented. Fusion-evaporation and fusion-fission cross sections have been
extracted and compared with the existing systematics. Experimental data
concerning light charged particles have been compared with the prediction of
the statistical model in its implementation in the Gemini++ code, well suited
even for high spin systems, in order to tune the main model parameters in a
mass region not abundantly covered by exclusive experimental data.
Multiplicities for light charged particles emitted in fusion evaporation events
are also presented. Some discrepancies with respect to the prediction of the
statistical model have been found for forward emitted -particles; they
may be due both to pre-equilibrium emission and to reaction channels (such as
Deep Inelastic Collisions, QuasiFission/QuasiFusion) different from the
compound nucleus formation.Comment: 14 pages, 14 figure
Coulomb chronometry to probe the decay mechanism of hot nuclei
In 129 Xe+ nat Sn central collisions from 8 to 25 MeV/A, the three-fragment
exit channel occurs with a significant cross section. We show that these
fragments arise from two successive binary splittings of a heavy composite
system. The sequence of fragment production is determined. Strong Coulomb
proximity effects are observed in the three-fragment final state. A comparison
with Coulomb trajec-tory calculations shows that the time scale between the
consecutive break-ups decreases with increasing bombarding energy, becoming
quasi-simultaneous above excitation energy E * = 4.00.5 MeV/A. This
transition from sequential to simultaneous break-up was interpreted as the
signature of the onset of multifragmentation for the three-fragment exit
channel in this system.Comment: 12 pages; 13 Figures; 4 Table; Accepted for publication in Physical
Review
N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death.
APO2L/TRAIL (TNF-related apoptosis-inducing ligand) induces death of tumor cells through two agonist receptors, TRAIL-R1 and TRAIL-R2. We demonstrate here that N-linked glycosylation (N-glyc) plays also an important regulatory role for TRAIL-R1-mediated and mouse TRAIL receptor (mTRAIL-R)-mediated apoptosis, but not for TRAIL-R2, which is devoid of N-glycans. Cells expressing N-glyc-defective mutants of TRAIL-R1 and mouse TRAIL-R were less sensitive to TRAIL than their wild-type counterparts. Defective apoptotic signaling by N-glyc-deficient TRAIL receptors was associated with lower TRAIL receptor aggregation and reduced DISC formation, but not with reduced TRAIL-binding affinity. Our results also indicate that TRAIL receptor N-glyc impacts immune evasion strategies. The cytomegalovirus (CMV) UL141 protein, which restricts cell-surface expression of human TRAIL death receptors, binds with significant higher affinity TRAIL-R1 lacking N-glyc, suggesting that this sugar modification may have evolved as a counterstrategy to prevent receptor inhibition by UL141. Altogether our findings demonstrate that N-glyc of TRAIL-R1 promotes TRAIL signaling and restricts virus-mediated inhibition
Particle-hole state densities with non-equidistant single-particle levels
The correct use of energy-dependent single-particle level (s.p.l.) densities
within particle-hole state densities based on the equidistant spacing model
(ESM) is analysed. First, an analytical expression is obtained following the
convolution of energy-dependent excited-particle and hole densities. Next, a
comparison is made with results of the ESM formula using average s.p.l.
densities for the excited particles and holes, respectively. The Fermi-gas
model (FGM) s.p.l. densities calculated at the corresponding average excitation
energies are used in both cases. The analysis concerns also the density of
particle-hole bound states. The pairing correlations are taken into account
while the comparison of various effects includes the exact correction for the
Pauli exclusion principle. Quantum-mechanical s.p.l. densities and the
continuum effect can also match a corresponding FGM formula, suitable for use
within the average energy-dependent partial state density in multistep reaction
models.Comment: 29 pages, ReVTeX, 11 postscript figures, submitted to Phys.Rev.
- …
