12,891 research outputs found
Temperature dependence of the upper critical field of type-II superconductors from isothermal magnetization data. Application to high temperature superconductors
Using the Ginzburg-Landau theory in very general terms, we develop a simple
scaling procedure which allows to establish the temperature dependence of the
upper critical field and the value of the superconducting critical temperature
Tc of type-II superconductors from measurements of the reversible isothermal
magnetization. An analysis of existing experimental data shows that the
normalized dependencies the upper critical field on T/Tc are practically
identical for all families of high temperature superconductors at all
temperatures for which the magnetization data are available.Comment: subitted to Phys. Rev.
Quantifying Spatiotemporal Chaos in Rayleigh-B\'enard Convection
Using large-scale parallel numerical simulations we explore spatiotemporal
chaos in Rayleigh-B\'enard convection in a cylindrical domain with
experimentally relevant boundary conditions. We use the variation of the
spectrum of Lyapunov exponents and the leading order Lyapunov vector with
system parameters to quantify states of high-dimensional chaos in fluid
convection. We explore the relationship between the time dynamics of the
spectrum of Lyapunov exponents and the pattern dynamics. For chaotic dynamics
we find that all of the Lyapunov exponents are positively correlated with the
leading order Lyapunov exponent and we quantify the details of their response
to the dynamics of defects. The leading order Lyapunov vector is used to
identify topological features of the fluid patterns that contribute
significantly to the chaotic dynamics. Our results show a transition from
boundary dominated dynamics to bulk dominated dynamics as the system size is
increased. The spectrum of Lyapunov exponents is used to compute the variation
of the fractal dimension with system parameters to quantify how the underlying
high-dimensional strange attractor accommodates a range of different chaotic
dynamics
Magnetic substructure in the northern Fermi Bubble revealed by polarized WMAP emission
We report a correspondence between giant, polarized microwave structures
emerging north from the Galactic plane near the Galactic center and a number of
GeV gamma-ray features, including the eastern edge of the recently-discovered
northern Fermi Bubble. The polarized microwave features also correspond to
structures seen in the all-sky 408 MHz total intensity data, including the
Galactic center spur. The magnetic field structure revealed by the polarization
data at 23 GHz suggests that neither the emission coincident with the Bubble
edge nor the Galactic center spur are likely to be features of the local ISM.
On the basis of the observed morphological correspondences, similar inferred
spectra, and the similar energetics of all sources, we suggest a direct
connection between the Galactic center spur and the northern Fermi Bubble.Comment: Accepted for publication in The Astrophysical Journal Letters after
minor change
Universality Class of the Reversible-Irreversible Transition in Sheared Suspensions
Collections of non-Brownian particles suspended in a viscous fluid and
subjected to oscillatory shear at very low Reynolds number have recently been
shown to exhibit a remarkable dynamical phase transition separating reversible
from irreversible behaviour as the strain amplitude or volume fraction are
increased. We present a simple model for this phenomenon, based on which we
argue that this transition lies in the universality class of the conserved DP
models or, equivalently, the Manna model. This leads to predictions for the
scaling behaviour of a large number of experimental observables. Non-Brownian
suspensions under oscillatory shear may thus constitute the first experimental
realization of an inactive-active phase transition which is not in the
universality class of conventional directed percolation.Comment: 4 pages, 2 figures, final versio
Equilibrium magnetization in the vicinity of the first order phase transition in the mixed state of high-Tc superconductors
We present the results of a scaling analysis of isothermal magnetization M(H)
curves measured in the mixed state of high-Tc superconductors in the vicinity
of the established first order phase transition. The most surprising result of
our analysis is that the difference between the magnetization above and below
the transition may have either sign, depending on the particular chosen sample.
We argue that this observation, based on M(H) data available in the literature,
is inconsistent with the interpretation that the well known first order phase
transition in the mixed state of high-Tc superconductors always represents the
melting transition in the vortex system.Comment: 4 pages, 5 figure
Scaling of the Equilibrium Magnetization in the Mixed State of Type-II Superconductors
No Heading: We discuss the analysis of mixed-state magnetization data of type-II superconductors using a recently developed scaling procedure. It is based on the fact that, if the Ginzburg-Landau parameter κ does not depend on temperature, the magnetic susceptibility χ(H, T) is a universal function of H/Hc2(T), leading to a simple relation between magnetizations at different temperatures. Although this scaling procedure does not provide absolute values of the upper critical field Hc2(T), its temperature variation can be established rather accurately. This provides an opportunity to validate theoretical models that are usually employed for the evaluation of Hc2(T) from equilibrium magnetization data. In the second part of the paper we apply this scaling procedure for a discussion of the notorious first order phase transition in the mixed state of high-Tc superconductors. Our analysis, based on experimental magnetization data available in the literature, shows that the shift of the magnetization accross the transition may adopt either sign, depending on the particular chosen sample. We argue that this observation is inconsistent with the interpretation that this transition always represents the melting transition of the vortex lattic
ALFA: First Operational Experience of the MPE/MPIA Laser Guide Star System for Adaptive Optics
The sodium laser guide star adaptive optics system ALFA has been constructed
at the Calar Alto 3.5-m telescope. Following the first detection of the laser
beacon on the wavefront sensor in 1997 the system is now being optimized for
best performance. In this contribution we discuss the current status of the
launch beam and the planned improvements and upgrades. We report on the
performance level achieved when it is used with the adaptive optics system, and
relate various aspects of our experience during operation of the system. We
have begun to produce scientific results and mention two of these.Comment: 9 pages, 6 figures, LaTeX (spie.sty). SPIE conf proc 3353, Adaptive
Optical System Technologies, March 199
- …
