962 research outputs found
Scheduling a multi class queue with many exponential servers: asymptotic optimality in heavy traffic
We consider the problem of scheduling a queueing system in which many
statistically identical servers cater to several classes of impatient
customers. Service times and impatience clocks are exponential while arrival
processes are renewal. Our cost is an expected cumulative discounted function,
linear or nonlinear, of appropriately normalized performance measures. As a
special case, the cost per unit time can be a function of the number of
customers waiting to be served in each class, the number actually being served,
the abandonment rate, the delay experienced by customers, the number of idling
servers, as well as certain combinations thereof. We study the system in an
asymptotic heavy-traffic regime where the number of servers n and the offered
load r are simultaneously scaled up and carefully balanced: n\approx r+\beta
\sqrtr for some scalar \beta. This yields an operation that enjoys the benefits
of both heavy traffic (high server utilization) and light traffic (high service
levels.
Singularities of bi-Hamiltonian systems
We study the relationship between singularities of bi-Hamiltonian systems and
algebraic properties of compatible Poisson brackets. As the main tool, we
introduce the notion of linearization of a Poisson pencil. From the algebraic
viewpoint, a linearized Poisson pencil can be understood as a Lie algebra with
a fixed 2-cocycle. In terms of such linearizations, we give a criterion for
non-degeneracy of singular points of bi-Hamiltonian systems and describe their
types
Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas
The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning)
modes in strongly nonaxisymmetric toroidal systems is difficult to analyze
numerically owing to the singular nature of ideal MHD caused by lack of an
inherent scale length. In this paper, ideal MHD is regularized by using a
-space cutoff, making the ray tracing for the WKB ballooning formalism a
chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier
spectrum needed for resolving toroidally localized ballooning modes with a
global eigenvalue code is estimated from the Weyl formula. This
phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication
in Phys. Rev. Letter
The HTA Core Model: A novel method for producing and reporting health technology assessments
Objectives: The aim of this study was to develop and test a generic framework to enable international collaboration for producing and sharing results of health technology assessments (HTAs). Methods: Ten international teams constructed the HTA Core Model, dividing information contained in a comprehensive HTA into standardized pieces, the assessment elements. Each element contains a generic issue that is translated into practical research questions while performing an assessment. Elements were described in detail in element cards. Two pilot assessments, designated as Core HTAs were also produced. The Model and Core HTAs were both validated. Guidance on the use of the HTA Core Model was compiled into a Handbook. Results: The HTA Core Model considers health technologies through nine domains. Two applications of the Model were developed, one for medical and surgical interventions and another for diagnostic technologies. Two Core HTAs were produced in parallel with developing the model, providing the first real-life testing of the Model and input for further development. The results of formal validation and public feedback were primarily positive. Development needs were also identified and considered. An online Handbook is available. Conclusions: The HTA Core Model is a novel approach to HTA. It enables effective international production and sharing of HTA results in a structured format. The face validity of the Model was confirmed during the project, but further testing and refining are needed to ensure optimal usefulness and user-friendliness. Core HTAs are intended to serve as a basis for local HTA reports. Core HTAs do not contain recommendations on technology us
A comparison of multidisciplinary team residential rehabilitation with conventional outpatient care for the treatment of non-arthritic intra-articular hip pain in UK Military personnel:a protocol for a randomised controlled trial
BACKGROUND: Non-arthritic hip disorders are defined as abnormalities of the articulating surfaces of the acetabulum and femur before the onset of osteoarthritis, including intra-articular structures such as the acetabular labrum and chondral surfaces. Abnormal femoroacetabular morphology is commonly seen in young men who constitute much of the UK military population. Residential multidisciplinary team (MDT) rehabilitation for patients with musculoskeletal injuries has a long tradition in the UK military, however, there are no studies presenting empirical data on the efficacy of a residential MDT approach compared with individualised conventional outpatient treatment. With no available data, the sustainability of this care pathway has been questioned. The purpose of this randomised controlled trial is to compare the effects of a residential multidisciplinary intervention, to usual outpatient care, on the clinical outcomes of young active adults undergoing treatment for non-arthritic intra-articular hip pain. METHODS/DESIGN: The trial will be conducted at the Defence Medical Rehabilitation Centre, Headley Court, UK. One hundred military male participants with clinical indicators of non-arthritic intra-articular hip pain will be randomly allocated to either: (1) 7-day residential multidisciplinary team intervention, n = 50; (2) 6-week physiotherapist-led outpatient intervention (conventional care), n = 50. Measurements will be taken at baseline, post-treatment (1-week MDT group; 6-weeks physiotherapy group), and 12-weeks. The primary outcome measures are the function in daily living sub-scale of the Copenhagen Hip and Groin Outcome Score (HAGOS), the physical function subscale of the Non-arthritic Hip Score (NAHS), and VAS pain scale. Secondary outcomes include objective measures of physical capacity and general health. An intention-to-treat analysis will be performed using linear and mixed models. DISCUSSION: This study will be the first to assess the efficacy of intensive MDT rehabilitation, versus conventional outpatient care, for the management of non-arthritic hip pain. The results from this study will add to the evidence-base and inform clinical practice for the management of intra-articular non-arthritic hip pain and femoroacetabular impingement in young active adults. TRIAL REGISTRATION: ISRCTN Reference: ISRCTN 59255714 dated 11-Nov-2015 ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12891-016-1309-z) contains supplementary material, which is available to authorized users
The history of degenerate (bipartite) extremal graph problems
This paper is a survey on Extremal Graph Theory, primarily focusing on the
case when one of the excluded graphs is bipartite. On one hand we give an
introduction to this field and also describe many important results, methods,
problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version
of our survey presented in Erdos 100. In this version 2 only a citation was
complete
Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors
<p>Abstract</p> <p>Background</p> <p>Several stromal cell subtypes including macrophages contribute to tumor progression by inducing epithelial-mesenchymal transition (EMT) at the invasive front, a mechanism also linked to metastasis. Tumor associated macrophages (TAM) reside mainly at the invasive front but they also infiltrate tumors and in this process they mainly assume a tumor promoting phenotype. In this study, we asked if TAMs also regulate EMT intratumorally. We found that TAMs through TGF-β signaling and activation of the β-catenin pathway can induce EMT in intratumoral cancer cells.</p> <p>Methods</p> <p>We depleted macrophages in F9-teratocarcinoma bearing mice using clodronate-liposomes and analyzed the tumors for correlations between gene and protein expression of EMT-associated and macrophage markers. The functional relationship between TAMs and EMT was characterized <it>in vitro </it>in the murine F9 and mammary gland NMuMG cells, using a conditioned medium culture approach. The clinical relevance of our findings was evaluated on a tissue microarray cohort representing 491 patients with non-small cell lung cancer (NSCLC).</p> <p>Results</p> <p>Gene expression analysis of F9-teratocarcinomas revealed a positive correlation between TAM-densities and mesenchymal marker expression. Moreover, immunohistochemistry showed that TAMs cluster with EMT phenotype cells in the tumors. <it>In vitro</it>, long term exposure of F9-and NMuMG-cells to macrophage-conditioned medium led to decreased expression of the epithelial adhesion protein E-cadherin, activation of the EMT-mediating β-catenin pathway, increased expression of mesenchymal markers and an invasive phenotype. In a candidate based screen, macrophage-derived TGF-β was identified as the main inducer of this EMT-associated phenotype. Lastly, immunohistochemical analysis of NSCLC patient samples identified a positive correlation between intratumoral macrophage densities, EMT markers, intraepithelial TGF-β levels and tumor grade.</p> <p>Conclusions</p> <p>Data presented here identify a novel role for macrophages in EMT-promoted tumor progression. The observation that TAMs cluster with intra-epithelial fibroblastoid cells suggests that the role of macrophages in tumor-EMT extends beyond the invasive front. As macrophage infiltration and pronounced EMT tumor phenotype correlate with increased grade in NSCLC patients, we propose that TAMs also promote tumor progression by inducing EMT locally in tumors.</p
- …
