5,107 research outputs found

    Correlation-Strength Driven Anderson Metal-Insulator Transition

    Get PDF
    The possibility of driving an Anderson metal-insulator transition in the presence of scale-free disorder by changing the correlation exponent is numerically investigated. We calculate the localization length for quasi-one-dimensional systems at fixed energy and fixed disorder strength using a standard transfer matrix method. From a finite-size scaling analysis we extract the critical correlation exponent and the critical exponent characterizing the phase transition.Comment: 3 pages; 2 figure

    Antichain cutsets of strongly connected posets

    Full text link
    Rival and Zaguia showed that the antichain cutsets of a finite Boolean lattice are exactly the level sets. We show that a similar characterization of antichain cutsets holds for any strongly connected poset of locally finite height. As a corollary, we get such a characterization for semimodular lattices, supersolvable lattices, Bruhat orders, locally shellable lattices, and many more. We also consider a generalization to strongly connected hypergraphs having finite edges.Comment: 12 pages; v2 contains minor fixes for publicatio

    The Spitzer Source List

    Get PDF
    The Spitzer Science Center will produce a source list (SL) of photometry for a large subset of imaging data in the Spitzer Heritage Archive (SHA). The list will enable a large range of science projects. The primary requirement on the SL is very high reliability, with areal coverage, completeness and limiting depth being secondary considerations. The SHA at the NASA Infrared Science Archive (IRSA) will serve the SL as an enhanced data product. The SL will include data from the four channels of IRAC (3–8 microns) and the 24 micron channel of MIPS. The Source List will include image products (mosaics) and photometric data for Spitzer observations of about 1500 square degrees and include around 30 million sources. We describe the plans and timeline for development of the Spitzer Source List. We demonstrate the verification of the Source List pipeline using Spitzer Legacy catalogs at "truth tables". Finally, we discuss the range of use cases which will be supported

    Age of the Universe: Influence of the Inhomogeneities on the global Expansion-Factor

    Get PDF
    For the first time we calculate quantitatively the influence of inhomogeneities on the global expansion factor by averaging the Friedmann equation. In the framework of the relativistic second-order Zel'dovich-approximation scheme for irrotational dust we use observational results in form of the normalisation constant fixed by the COBE results and we check different power spectra, namely for adiabatic CDM, isocurvature CDM, HDM, WDM, Strings and Textures. We find that the influence of the inhomogeneities on the global expansion factor is very small. So the error in determining the age of the universe using the Hubble constant in the usual way is negligible. This does not imply that the effect is negligible for local astronomical measurements of the Hubble constant. Locally the determination of the redshift-distance relation can be strongly influenced by the peculiar velocity fields due to inhomogeneities. Our calculation does not consider such effects, but is contrained to comparing globally homogeneous and averaged inhomogeneous matter distributions. In addition we relate our work to previous treatments.Comment: 10 pages, version accepted by Phys. Rev.

    Non-linearity and related features of Makyoh (magic-mirror) imaging

    Get PDF
    Non-linearity in Makyoh (magic-mirror) imaging is analyzed using a geometrical optical approach. The sources of non-linearity are identified as (1) a topological mapping of the imaged surface due to surface gradients, (2) the hyperbolic-like dependence of the image intensity on the local curvatures, and (3) the quadratic dependence of the intensity due to local Gaussian surface curvatures. Criteria for an approximate linear imaging are given and the relevance to Makyoh-topography image evaluation is discussed

    Big data and data repurposing – using existing data to answer new questions in vascular dementia research

    Get PDF
    Introduction: Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD. Methods: We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group’s experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015). Results: We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach. Conclusions: There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use

    Observation of the Cabibbo-suppressed decay Xi_c+ -> p K- pi+

    Full text link
    We report the first observation of the Cabibbo-suppressed charm baryon decay Xi_c+ -> p K- pi+. We observe 150 +- 22 events for the signal. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 GeV/c Sigma- beam. The branching fractions of the decay relative to the Cabibbo-favored Xi_c+ -> Sigma+ K- pi+ and Xi_c+ -> X- pi+ pi+ are measured to be B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> Sigma+ K- pi+) = 0.22 +- 0.06 +- 0.03 and B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> X- pi+ pi+) = 0.20 +- 0.04 +- 0.02, respectively.Comment: 5 pages, RevTeX, 3 figures (postscript), Submitted to Phys. Rev. Let

    Measurement of the Ds lifetime

    Get PDF
    We report precise measurement of the Ds meson lifetime. The data were taken by the SELEX experiment (E781) spectrometer using 600 GeV/c Sigma-, pi- and p beams. The measurement has been done using 918 reconstructed Ds. The lifetime of the Ds is measured to be 472.5 +- 17.2 +- 6.6 fs, using K*(892)0K+- and phi pi+- decay modes. The lifetime ratio of Ds to D0 is 1.145+-0.049.Comment: 5 pages, 2 figures submitted to Phys. Lett.

    Sublocalization, superlocalization, and violation of standard single parameter scaling in the Anderson model

    Full text link
    We discuss the localization behavior of localized electronic wave functions in the one- and two-dimensional tight-binding Anderson model with diagonal disorder. We find that the distributions of the local wave function amplitudes at fixed distances from the localization center are well approximated by log-normal fits which become exact at large distances. These fits are consistent with the standard single parameter scaling theory for the Anderson model in 1d, but they suggest that a second parameter is required to describe the scaling behavior of the amplitude fluctuations in 2d. From the log-normal distributions we calculate analytically the decay of the mean wave functions. For short distances from the localization center we find stretched exponential localization ("sublocalization") in both, 1d and 2d. In 1d, for large distances, the mean wave functions depend on the number of configurations N used in the averaging procedure and decay faster that exponentially ("superlocalization") converging to simple exponential behavior only in the asymptotic limit. In 2d, in contrast, the localization length increases logarithmically with the distance from the localization center and sublocalization occurs also in the second regime. The N-dependence of the mean wave functions is weak. The analytical result agrees remarkably well with the numerical calculations.Comment: 12 pages with 9 figures and 1 tabl
    corecore