549 research outputs found
Participatory design, beyond the local
This workshop aims at stimulating and opening a debate around the capacity of Participatory Design (PD) and other co-design approaches to deliver outcomes and methodologies that can have an impact and value for reuse well beyond the local context in which they were originally developed. This will be achieved by stimulating the submission of position papers by researchers from the PD community and beyond.These papers will be discussed during the workshop in order to identify challenges, obstacles but also potentials for scaling up PD processes and results from the local to the global.</p
On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics
We prove the convergence of the solutions for the incompressible homogeneous magnetohydrodynamics (MHD) system to the solutions to ideal MHD one in the inviscid and non-resistive limit, detailing the explicit convergence rates. For this study we consider a fluid occupying the whole space R3 and we assume that the viscosity effects in this fluid can be described by two different operators: the usual Laplacian operator affected by the inverse of the Reynolds number or by a viscosity operator introduced by S. I. Braginskii in 1965
Peak shape clustering reveals biological insights
Background: ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results: We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions: Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression
Awareness, Co-operation, Tackling to Stop Sexual Bullying: An empowerment pack for young people and the people working with them (The ACT Pack).
Available in English, Bulgarian, Slovenian and Italia
Well-posedness of boundary layer equations for time-dependent flow of non-Newtonian fluids
We consider the flow of an upper convected Maxwell fluid in the limit of high
Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be
imposed on the solutions. We derive equations for the resulting boundary layer
and prove the well-posedness of these equations. A transformation to Lagrangian
coordinates is crucial in the argument
Phonon-mediated superconductivity in strongly correlated electron systems: a Luttinger-Ward functional approach
We use a Luttinger-Ward functional approach to study the problem of
phonon-mediated superconductivity in electron systems with strong
electron-electron interactions (EEIs). Our derivation does not rely on an
expansion in skeleton diagrams for the EEI and the resulting theory is
therefore nonperturbative in the strength of the latter. We show that one of
the building blocks of the theory is the irreducible six-leg vertex related to
EEIs. Diagrammatically, this implies five contributions (one of the Fock and
four of the Hartree type) to the electronic self-energy, which, to the best of
our knowledge, have never been discussed in the literature. Our approach is
applicable to (and in fact designed to tackle superconductivity in) strongly
correlated electron systems described by generic lattice models, as long as the
glue for electron pairing is provided by phonons.Comment: To be published in the special issue of Annals of Physics
"Eliashberg-90" dedicated to Gerasim (Sima) Eliashber
Oscillations and waves in solar spicules
Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolutions and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfven and kink waves in spicules. We also address the extensive debate made on the Alfven versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes
- …
