450 research outputs found

    Bistability phenomena in one-dimensional polariton wires

    Get PDF
    We investigate the phenomena of bistability and domain wall propagation in polaritonic systems with dissipation provided by the interaction with incoherent phonon bath. The results on the temperature dependence of the polariton bistability behavior and polariton neuron switching are presented.Comment: 6 pages + 4 figures. Continuation of the work published in Phys. Rev. B 83, 165316 (2011

    Angle-resolved reflectance and surface plasmonics of the MAX phases

    Full text link
    We investigate theoretically the optical response of bulk samples and thin films of the MAX phases materials, accounting for their large electrical anisotropy. We reveal the unusual behaviour of the reflection and transmittion spectra as a function of the incidence angle and predict the effect of the inverse total internal reflection. We also investigate the behaviour of the surface plasmon modes in bulk samples and thin films and analyse the difference between MAX materials and conventional metals.Comment: 3 pages, published in Optics Letter

    Exciton-exciton interaction in transition-metal dichalcogenide monolayers

    Get PDF
    We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction, specific to monolayer structures, leads to the unique behavior of the exciton-exciton scattering for excited states, characterized by the non-monotonic dependence of the interaction as function of the transferred momentum. We find that the nontrivial screening enables the description of TMD exciton interaction strength by approximate formula which includes exciton binding parameters. The influence of screening and dielectric environment on the exciton-exciton interaction was studied, showing qualitatively different behavior for ground state and excited states of excitons. Furthermore, we consider exciton-electron interaction, which for the excited states is governed by the dominant attractive contribution of the exchange component, which increases with the excitation number. The results provide a quantitative description of the exciton-exciton and exciton-electron scattering in transition metal dichalcogenides, and are of interest for the design of perspective nonlinear optical devices based on TMD monolayers.Comment: 10 pages, 6 figure

    Functional renormalization group approach to the singlet-triplet transition in quantum dots

    Full text link
    We present a functional renormalization group approach to the zero bias transport properties of a quantum dot with two different orbitals and in presence of Hund's coupling. Tuning the energy separation of the orbital states, the quantum dot can be driven through a singlet-triplet transition. Our approach, based on the approach by Karrasch {\em et al} which we apply to spin-dependent interactions, recovers the key characteristics of the quantum dot transport properties with very little numerical effort. We present results on the conductance in the vicinity of the transition and compare our results both with previous numerical renormalization group results and with predictions of the perturbative renormalization group.Comment: 15 pages, 9 figure

    Stochastic Gross-Pitaevskii Equation for the Dynamical Thermalization of Bose-Einstein Condensates

    Full text link
    We present a theory for the description of energy relaxation in a nonequilibrium condensate of bosonic particles. The approach is based on coupling to a thermal bath of other particles (e.g., phonons in a crystal, or noncondensed atoms in a cold atom system), which are treated with a Monte Carlo type approach. Together with a full account of particle-particle interactions, dynamic driving, and particle loss, this offers a complete description of recent experiments in which Bose-Einstein condensates are seen to relax their energy as they propagate in real space and time. As an example, we apply the theory to the solid-state system of microcavity exciton polaritons, in which nonequilibrium effects are particularly prominent.Comment: Manuscript: 5 pages (Main Text) + 2 figures + 4 pages (Supplemental Material). Proofs versio

    Structure of surface electronic states in strained mercury telluride

    Get PDF
    We present the theory describing the various surface electronic states arisen from the mixing of conduction and valence bands in a strained mercury telluride (HgTe) bulk material. We demonstrate that the strain-induced band gap in the Brillouin zone center of HgTe results in the surface states of two different kinds. Surface states of the first kind exist in the small region of electron wave vectors near the center of the Brillouin zone and have the Dirac linear electron dispersion characteristic for topological states. The surface states of the second kind exist only far from the center of the Brillouin zone and have the parabolic dispersion for large wave vectors. The structure of these surface electronic states is studied both analytically and numerically in the broad range of their parameters, aiming to develop its systematic understanding for the relevant model Hamiltonian. The results bring attention to the rich surface physics relevant for topological systems.Comment: Published version. arXiv admin note: text overlap with arXiv:1903.0457

    Aharonov-Bohm effect for excitons in a semiconductor quantum ring dressed by circularly polarized light

    Full text link
    We show theoretically that the strong coupling of circularly polarized photons to an exciton in ring-like semiconductor nanostructures results in physical nonequivalence of clockwise and counterclockwise exciton rotations in the ring. As a consequence, the stationary energy splitting of exciton states corresponding to these mutually opposite rotations appears. This excitonic Aharonov-Bohm effect depends on the intensity and frequency of the circularly polarized field and can be detected in state-of-the-art optical experiments.Comment: Published versio
    corecore