270 research outputs found

    A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli

    Get PDF
    Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon

    New evidence for habitat specific selection in Wadden Sea Zostera marina populations revealed by genome scanning using SNP and microsatellite markers

    Get PDF
    Eelgrass Zostera marina is an ecosystem-engineering species of outstanding importance for coastal soft sediment habitats that lives in widely diverging habitats. Our first goal was to detect divergent selection and habitat adaptation at the molecular genetic level; hence, we compared three pairs of permanently submerged versus intertidal populations using genome scans, a genetic marker-based approach. Three different statistical approaches for outlier identification revealed divergent selection at 6 loci among 46 markers (6 SNPs, 29 EST microsatellites and 11 anonymous microsatellites). These outlier loci were repeatedly detected in parallel habitat comparisons, suggesting the influence of habitat-specific selection. A second goal was to test the consistency of the general genome scan approach by doubling the number of gene-linked microsatellites and adding single nucleotide polymorphism (SNP) loci, a novel marker type for seagrasses, compared to a previous study. Reassuringly, results with respect to selection were consistent among most marker loci. Functionally interesting marker loci were linked to genes involved in osmoregulation and water balance, suggesting different osmotic stress, and reproductive processes (seed maturation), pointing to different life history strategies. The identified outlier loci are valuable candidates for further investigation into the genetic basis of natural selection

    Genome-Wide Association Study for Incident Myocardial Infarction and Coronary Heart Disease in Prospective Cohort Studies: The CHARGE Consortium

    Get PDF
    Background Data are limited on genome-wide association studies (GWAS) for incident coronary heart disease (CHD). Moreover, it is not known whether genetic variants identified to date also associate with risk of CHD in a prospective setting. Methods We performed a two-stageGWAS analysis of incident myocardial infarction (MI) and CHD in a total of 64,297 individuals (including 3898MI cases, 5465 CHD cases). SNPs that passed an arbitrary threshold of 5×10-6 in Stage I were taken to Stage II for further discovery. Furthermore, in an analysis of prognosis, we studied whether known SNPs from former GWAS were associated with totalmortality in individuals who experienced MI during follow-up. Results In Stage I 15 loci passed the threshold of 5×10-6; 8 loci for MI and 8 loci for CHD, for which one locus overlapped and none were reported in previous GWAS meta-analyses. We took 60 SNPs representing these 15 loci to Stage II of discovery. Four SNPs near QKI showed nominally significant association with MI (p-value<8.8×10-3) and three exceeded the genome-wide significance threshold when Stage I and Stage II results were combined (top SNP rs6941513: p = 6.2×10-9). Despite excellent power, the 9p21 locus SNP (rs1333049) was only modestly associated with MI (HR = 1.09, p-value = 0.02) and marginally with CHD (HR = 1.06, p-value = 0.08). Among an inception cohort of those who experienced MI during follow-up, the risk allele of rs1333049 was associated with a decreased risk of subsequent mortality (HR = 0.90, p-value = 3.2×10-3). Conclusions QKI represents a novel locus that may serve as a predictor of incident CHD in prospective studies. The association of the 9p21 locus both with increased risk of first myocardial infarction and longer survival after MI highlights the importance of study design in investigating genetic determinants of complex disorders

    Large Scale Association Analysis of Novel Genetic Loci for Coronary Artery Disease

    Get PDF
    Background-Combined analysis of 2 genome-wide association studies in cases enriched for family history recently identified 7 loci (on 1p13.3, 1q41, 2q36.3, 6q25.1, 9p21, 10q11.21, and 15q22.33) that may affect risk of coronary artery disease (CAD). Apart from the 9p21 locus, the other loci await substantive replication. Furthermore, the effect of these loci on CAD risk in a broader range of individuals remains to be determined.Methods and Results-We undertook association analysis of single nucleotide polymorphisms at each locus with CAD risk in 11 550 cases and 11 205 controls from 9 European studies. The 9p21.3 locus showed unequivocal association (rs1333049, combined odds ratio [OR]=1.20, 95% CI [1.16 to 1.25], probability value=2.81x10(-21)). We also confirmed association signals at 1p13.3 (rs599839, OR=1.13 [1.08 to 1.19], P=1.44x10(-7)), 1q41 (rs3008621, OR=1.10 [1.04 to 1.17], P=1.02x10(-3)), and 10q11.21 (rs501120, OR=1.11 [1.05 to 1.18], P=4.34x10(-4)). The associations with 6q25.1 (rs6922269, P=0.020) and 2q36.3 (rs2943634, P=0.032) were borderline and not statistically significant after correction for multiple testing. The 15q22.33 locus did not replicate. The 10q11.21 locus showed a possible sex interaction (P = 0.015), with a significant effect in women (OR=1.29 [1.15 to 1.45], P=1.86x10(-5)) but not men (OR=1.03 [0.96 to 1.11], P=0.387). There were no other strong interactions of any of the loci with other traditional risk factors. The loci at 9p21, 1p13.3, 2q36.3, and 10q11.21 acted independently and cumulatively increased CAD risk by 15% (12% to 18%), per additional risk allele. ConclusionsThe findings provide strong evidence for association between at least 4 genetic loci and CAD risk. Cumulatively, these novel loci have a significant impact on risk of CAD at least in European populations. (Arterioscler Thromb Vasc Biol. 2009; 29: 774-780.

    Echium oil is not protective against weight loss in head and neck cancer patients undergoing curative radio(chemo)therapy: a randomised-controlled trial

    Get PDF
    Background: Therapy-induced mucositis and dysphagia puts head and neck (H&N) cancer patients at increased risk for developing cachexia. Omega-3 fatty acids (n-3 FA) have been suggested to protect against cachexia. We aimed to examine if echium oil, a plant source of n-3 FA, could reduce weight loss in H&N cancer patients undergoing radio(chemo)therapy with curative intent. Methods: In a double-blind trial, patients were randomly assigned to echium oil (intervention (I) group; 7.5 ml bis in die (b.i.d.), 235 mg/ml α-linolenic acid (ALA) + 95 mg/ml stearidonic acid (SDA) + 79 mg/ml γ-linolenic acid (GLA)) or n-3 FA deficient sunflower oil high oleic (control (C) group; 7.5 ml b.i.d.) additional to standard nutritional support during treatment. Differences in percentage weight loss between both groups were analysed according to the intention-to-treat principle. Erythrocyte FA profile, body composition, nutritional status and quality of life were collected. Results: Ninety-one eligible patients were randomised, of whom 83 were evaluable. Dietary supplement adherence was comparable in both groups (median, I: 87%, C: 81%). At week 4, the I group showed significantly increased values of erythrocyte n-3 eicosapentanoic acid (EPA, 14% vs −5%) and n-6 GLA (42% vs −20%) compared to the C group, without a significant change in n-6 arachidonic acid (AA, 2% vs −1%). Intention-to-treat analysis could not reveal a significant reduction in weight loss related to echium oil consumption (median weight loss, I: 8.9%, C: 7.6%). Also, no significant improvement was observed in the other evaluated anthropometric parameters. Conclusions: Echium oil effectively increased erythrocyte EPA and GLA FAs in H&N cancer patients. It failed however to protect against weight loss, or improve nutritional parameters. Trial registration: ClinicalTrials.gov Identifier NCT01596933

    Optical frequency comb Fourier transform spectroscopy of formaldehyde in the 1250 to 1390 cm−1 range: Experimental line list and improved MARVEL analysis

    Get PDF
    We use optical frequency comb Fourier transform spectroscopy to record high-resolution, low-pressure, room-temperature spectra of formaldehyde (H212C16O) in the range of 1250 to 1390 cm−1. Through line-by-line fitting, we retrieve line positions and intensities of 747 rovibrational transitions: 558 from the ν6 band, 129 from the ν4 band, and 14 from the ν3 band, as well as 46 from four different hot bands. We incorporate the accurate and precise line positions (0.4 MHz median uncertainty) into the MARVEL (measured active vibration-rotation energy levels) analysis of the H2CO spectrum. This increases the number of MARVEL-predicted energy levels by 82 and of rovibrational transitions by 5382, and substantially reduces uncertainties of MARVEL-derived H2CO energy levels over a large range: from pure rotational levels below 200 cm−1 up to multiply excited vibrational levels at 6000 cm−1. This work is an important step toward filling the gaps in formaldehyde data in the HITRAN database

    High Accuracy Line Lists of CH4 and H2CO in the 8 µm Range from Optical Frequency Comb Fourier Transform Spectroscopy

    Get PDF
    Spectral data in the 8 µm region - a water window where many molecules show strong rovibrational features - are currently derived mostly from conventional FTIR measurements, with line position uncertainties of the order of a few to few tens of MHz [1]. Recently, we developed a Fourier transform spectrometer (FTS) based on a compact 8 μm frequency comb that allows line position retrieval with sub-MHz accuracy [2]. We record and interleave spectra at different repetition rates to obtain sampling point spacing of ~10 MHz using the sub-nominal resolution sampling-interleaving method to analyze the FTS data [3]. Here, we use this spectrometer to measure high-resolution absorption spectra of two species important in atmospheric sensing and astrophysics: methane, Fig. 1(a), a greenhouse gas and a constituent of exoplanetary atmospheres, and formaldehyde, Fig. 1(c), a toxic pollutant and a species found in the interstellar medium. By fitting Voigt functions to the individual absorption lines in spectra measured over a wide range of partial pressures, we determine center frequencies of transitions with intensities spanning more than 3 orders of magnitude, with typical uncertainties of a few hundred kHz

    CIRCULAR COMPARISON OF CONVENTIONAL PRESSURE STANDARDS USING A TRANSPORTABLE OPTICAL REFRACTOMETER: PREPARATION AND TRANSPORTATION

    Get PDF
    Using a transportable Fabry-Pérot cavity refractometer, a circular comparison of existing primary standards at several national metrology institutes is currently underway. This paper provides information about the refractometer, the preparation for the comparison, and the transportation procedur

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore