172 research outputs found

    Breakdown of large-N quenched reduction in SU(N) lattice gauge theories

    Full text link
    We study the validity of the large-N equivalence between four-dimensional SU(N) lattice gauge theory and its momentum quenched version--the Quenched Eguchi-Kawai (QEK) model. We find that the assumptions needed for the proofs of equivalence do not automatically follow from the quenching prescription. We use weak-coupling arguments to show that large-N equivalence is in fact likely to break down in the QEK model, and that this is due to dynamically generated correlations between different Euclidean components of the gauge fields. We then use Monte-Carlo simulations at intermediate couplings with 20 <= N <= 200 to provide strong evidence for the presence of these correlations and for the consequent breakdown of reduction. This evidence includes a large discrepancy between the transition coupling of the "bulk" transition in lattice gauge theories and the coupling at which the QEK model goes through a strongly first-order transition. To accurately measure this discrepancy we adapt the recently introduced Wang-Landau algorithm to gauge theories.Comment: 51 pages, 16 figures, Published verion. Historical inaccuracies in the review of the quenched Eguchi-Kawai model are corrected, discussion on reduction at strong-coupling added, references updated, typos corrected. No changes to results or conclusion

    ``GLUELUMP'' SPECTRUM AND ADJOINT SOURCE POTENTIAL IN LATTICE QCD3_3

    Get PDF
    We calculate the potential between ``quarks'' which are in the adjoint representation of SU(2) color in the three-dimensional lattice theory. We work in the scaling region of the theory and at large quark separations RR. We also calculate the masses MQgM_{Qg} of color-singlet bound states formed by coupling an adjoint quark to adjoint glue (``gluelumps''). Good scaling behavior is found for the masses of both magnetic (angular momentum J=0J=0) and electric (J=1J=1) gluelumps, and the magnetic gluelump is found to be the lowest-lying state. It is naively expected that the potential for adjoint quarks should saturate above a separation RscrR_{\rm scr} where it becomes energetically favorable to produce a pair of gluelumps. We obtain a good estimate of the naive screening distance RscrR_{\rm scr}. However we find little evidence of saturation in the potential out to separations RR of about twice RscrR_{\rm scr}.Comment: 8 pages plus 8 figures in 2 postscript files (uuencoded

    Magnetic Z(N) symmetry in 2+1 dimensions

    Get PDF
    This review describes the role of magnetic symmetry in 2+1 dimensional gauge theories. In confining theories without matter fields in fundamental representation the magnetic symmetry is spontaneously broken. Under some mild assumptions, the low-energy dynamics is determined universally by this spontaneous breaking phenomenon. The degrees of freedom in the effective theory are magnetic vortices. Their role in confining dynamics is similar to that played by pions and sigma in the chiral symmetry breaking dynamics. I give an explicit derivation of the effective theory in (2+1)-dimensional weakly coupled confining models and argue that it remains qualitatively the same in strongly coupled (2+1)-dimensional gluodynamics. Confinement in this effective theory is a very simple classical statement about the long range interaction between topological solitons, which follows (as a result of a simple direct classical calculation) from the structure of the effective Lagrangian. I show that if fundamentally charged dynamical fields are present the magnetic symmetry becomes local rather than global. The modifications to the effective low energy description in the case of heavy dynamical fundamental matter are discussed. This effective lagrangian naturally yields a bag like description of baryonic excitations. I also discuss the fate of the magnetic symmetry in gauge theories with the Chern-Simons term

    Analyses of shuttle orbiter approach and landing conditions

    Get PDF
    A study of one shuttle orbiter approach and landing conditions are summarized. Causes of observed PIO like flight deficiencies are identified and potential cures are examined. Closed loop pilot/vehicle analyses are described and path/attitude stability boundaries defined. The latter novel technique proved of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. The analytical results are shown to be consistent with flight test and fixed base simulation. Conclusions are drawn relating to possible improvements of the shuttle orbiter/digital flight control system

    String breaking by dynamical fermions in three-dimensional lattice QCD

    Full text link
    The first observation is made of hadronic string breaking due to dynamical fermions in zero temperature lattice QCD. The simulations are done for SU(2) color in three dimensions, with two flavors of staggered fermions. The results have clear implications for the large scale simulations that are being done to search (so far, without success) for string breaking in four-dimensional QCD. In particular, string breaking is readily observed using only Wilson loops to excite a static quark-antiquark pair. Improved actions on coarse lattices are used, providing an extremely efficient means to access the quark separations and propagation times at which string breaking occurs.Comment: Revised version to appear in Physical Review D, has additional discussion of the results, additional references, modified title, larger figure

    Numerical study of SU(2) Yang-Mills theory with gluinos

    Get PDF
    We report on a numerical investigation of the SU(2) gauge theory with gluinos. The low-lying spectrum in bosonic and fermionic channels is determined. Improvements of the multi-bosonic algorithm are discussed.Comment: latex, 3 pages, 4 figures; Poster presented by K. Spanderen at LATTICE9

    On the screening of the potential between adjoint sources in QCD3QCD_3

    Get PDF
    We calculate the potential between adjoint sources in SU(2)SU(2) pure gauge theory in three dimensions. We investigate whether the potential saturates at large separations due to the creation of a pair of gluelumps, colour-singlet states formed when glue binds to an adjoint source.Comment: 3 pages, uuencoded Z-compressed postscript file, contribution to Lattice '9

    Fast cavity-enhanced atom detection with low noise and high fidelity

    Get PDF
    Cavity quantum electrodynamics describes the fundamental interactions between light and matter, and how they can be controlled by shaping the local environment. For example, optical microcavities allow high-efficiency detection and manipulation of single atoms. In this regime fluctuations of atom number are on the order of the mean number, which can lead to signal fluctuations in excess of the noise on the incident probe field. Conversely, we demonstrate that nonlinearities and multi-atom statistics can together serve to suppress the effects of atomic fluctuations when making local density measurements on clouds of cold atoms. We measure atom densities below 1 per cavity mode volume near the photon shot-noise limit. This is in direct contrast to previous experiments where fluctuations in atom number contribute significantly to the noise. Atom detection is shown to be fast and efficient, reaching fidelities in excess of 97% after 10 us and 99.9% after 30 us.Comment: 7 pages, 4 figures, 1 table; extensive changes to format and discussion according to referee comments; published in Nature Communications with open acces

    The 2-dimensional non-linear sigma-model on a random latice

    Full text link
    The O(n) non-linear σ\sigma-model is simulated on 2-dimensional regular and random lattices. We use two different levels of randomness in the construction of the random lattices and give a detailed explanation of the geometry of such lattices. In the simulations, we calculate the mass gap for n=3,4n=3, 4 and 8, analysing the asymptotic scaling of the data and computing the ratio of Lambda parameters Λrandom/Λregular\Lambda_{\rm random}/\Lambda_{\rm regular}. These ratios are in agreement with previous semi-analytical calculations. We also numerically calculate the topological susceptibility by using the cooling method.Comment: REVTeX file, 23 pages. 13 postscript figures in a separate compressed tar fil

    Fitting a sum of exponentials to lattice correlation functions using a non-uniform prior

    Full text link
    Excited states are extracted from lattice correlation functions using a non-uniform prior on the model parameters. Models for both a single exponential and a sum of exponentials are considered, as well as an alternate model for the orthogonalization of the correlation functions. Results from an analysis of torelon and glueball operators indicate the Bayesian methodology compares well with the usual interpretation of effective mass tables produced by a variational procedure. Applications of the methodology are discussed.Comment: 12 pages, 8 figures, 8 tables, major revision, final versio
    corecore