172 research outputs found
Breakdown of large-N quenched reduction in SU(N) lattice gauge theories
We study the validity of the large-N equivalence between four-dimensional
SU(N) lattice gauge theory and its momentum quenched version--the Quenched
Eguchi-Kawai (QEK) model. We find that the assumptions needed for the proofs of
equivalence do not automatically follow from the quenching prescription. We use
weak-coupling arguments to show that large-N equivalence is in fact likely to
break down in the QEK model, and that this is due to dynamically generated
correlations between different Euclidean components of the gauge fields. We
then use Monte-Carlo simulations at intermediate couplings with 20 <= N <= 200
to provide strong evidence for the presence of these correlations and for the
consequent breakdown of reduction. This evidence includes a large discrepancy
between the transition coupling of the "bulk" transition in lattice gauge
theories and the coupling at which the QEK model goes through a strongly
first-order transition. To accurately measure this discrepancy we adapt the
recently introduced Wang-Landau algorithm to gauge theories.Comment: 51 pages, 16 figures, Published verion. Historical inaccuracies in
the review of the quenched Eguchi-Kawai model are corrected, discussion on
reduction at strong-coupling added, references updated, typos corrected. No
changes to results or conclusion
``GLUELUMP'' SPECTRUM AND ADJOINT SOURCE POTENTIAL IN LATTICE QCD
We calculate the potential between ``quarks'' which are in the adjoint
representation of SU(2) color in the three-dimensional lattice theory. We work
in the scaling region of the theory and at large quark separations . We also
calculate the masses of color-singlet bound states formed by coupling
an adjoint quark to adjoint glue (``gluelumps''). Good scaling behavior is
found for the masses of both magnetic (angular momentum ) and electric
() gluelumps, and the magnetic gluelump is found to be the lowest-lying
state. It is naively expected that the potential for adjoint quarks should
saturate above a separation where it becomes energetically
favorable to produce a pair of gluelumps. We obtain a good estimate of the
naive screening distance . However we find little evidence of
saturation in the potential out to separations of about twice .Comment: 8 pages plus 8 figures in 2 postscript files (uuencoded
Magnetic Z(N) symmetry in 2+1 dimensions
This review describes the role of magnetic symmetry in 2+1 dimensional gauge
theories. In confining theories without matter fields in fundamental
representation the magnetic symmetry is spontaneously broken. Under some mild
assumptions, the low-energy dynamics is determined universally by this
spontaneous breaking phenomenon. The degrees of freedom in the effective theory
are magnetic vortices. Their role in confining dynamics is similar to that
played by pions and sigma in the chiral symmetry breaking dynamics.
I give an explicit derivation of the effective theory in (2+1)-dimensional
weakly coupled confining models and argue that it remains qualitatively the
same in strongly coupled (2+1)-dimensional gluodynamics. Confinement in this
effective theory is a very simple classical statement about the long range
interaction between topological solitons, which follows (as a result of a
simple direct classical calculation) from the structure of the effective
Lagrangian. I show that if fundamentally charged dynamical fields are present
the magnetic symmetry becomes local rather than global. The modifications to
the effective low energy description in the case of heavy dynamical fundamental
matter are discussed. This effective lagrangian naturally yields a bag like
description of baryonic excitations. I also discuss the fate of the magnetic
symmetry in gauge theories with the Chern-Simons term
Analyses of shuttle orbiter approach and landing conditions
A study of one shuttle orbiter approach and landing conditions are summarized. Causes of observed PIO like flight deficiencies are identified and potential cures are examined. Closed loop pilot/vehicle analyses are described and path/attitude stability boundaries defined. The latter novel technique proved of great value in delineating and illustrating the basic causes of this multiloop pilot control problem. The analytical results are shown to be consistent with flight test and fixed base simulation. Conclusions are drawn relating to possible improvements of the shuttle orbiter/digital flight control system
String breaking by dynamical fermions in three-dimensional lattice QCD
The first observation is made of hadronic string breaking due to dynamical
fermions in zero temperature lattice QCD. The simulations are done for SU(2)
color in three dimensions, with two flavors of staggered fermions. The results
have clear implications for the large scale simulations that are being done to
search (so far, without success) for string breaking in four-dimensional QCD.
In particular, string breaking is readily observed using only Wilson loops to
excite a static quark-antiquark pair. Improved actions on coarse lattices are
used, providing an extremely efficient means to access the quark separations
and propagation times at which string breaking occurs.Comment: Revised version to appear in Physical Review D, has additional
discussion of the results, additional references, modified title, larger
figure
Numerical study of SU(2) Yang-Mills theory with gluinos
We report on a numerical investigation of the SU(2) gauge theory with
gluinos.
The low-lying spectrum in bosonic and fermionic channels is determined.
Improvements of the multi-bosonic algorithm are discussed.Comment: latex, 3 pages, 4 figures; Poster presented by K. Spanderen at
LATTICE9
On the screening of the potential between adjoint sources in
We calculate the potential between adjoint sources in pure gauge
theory in three dimensions. We investigate whether the potential saturates at
large separations due to the creation of a pair of gluelumps, colour-singlet
states formed when glue binds to an adjoint source.Comment: 3 pages, uuencoded Z-compressed postscript file, contribution to
Lattice '9
Fast cavity-enhanced atom detection with low noise and high fidelity
Cavity quantum electrodynamics describes the fundamental interactions between
light and matter, and how they can be controlled by shaping the local
environment. For example, optical microcavities allow high-efficiency detection
and manipulation of single atoms. In this regime fluctuations of atom number
are on the order of the mean number, which can lead to signal fluctuations in
excess of the noise on the incident probe field. Conversely, we demonstrate
that nonlinearities and multi-atom statistics can together serve to suppress
the effects of atomic fluctuations when making local density measurements on
clouds of cold atoms. We measure atom densities below 1 per cavity mode volume
near the photon shot-noise limit. This is in direct contrast to previous
experiments where fluctuations in atom number contribute significantly to the
noise. Atom detection is shown to be fast and efficient, reaching fidelities in
excess of 97% after 10 us and 99.9% after 30 us.Comment: 7 pages, 4 figures, 1 table; extensive changes to format and
discussion according to referee comments; published in Nature Communications
with open acces
The 2-dimensional non-linear sigma-model on a random latice
The O(n) non-linear -model is simulated on 2-dimensional regular and
random lattices. We use two different levels of randomness in the construction
of the random lattices and give a detailed explanation of the geometry of such
lattices. In the simulations, we calculate the mass gap for and 8,
analysing the asymptotic scaling of the data and computing the ratio of Lambda
parameters . These ratios are in
agreement with previous semi-analytical calculations. We also numerically
calculate the topological susceptibility by using the cooling method.Comment: REVTeX file, 23 pages. 13 postscript figures in a separate compressed
tar fil
Fitting a sum of exponentials to lattice correlation functions using a non-uniform prior
Excited states are extracted from lattice correlation functions using a
non-uniform prior on the model parameters. Models for both a single exponential
and a sum of exponentials are considered, as well as an alternate model for the
orthogonalization of the correlation functions. Results from an analysis of
torelon and glueball operators indicate the Bayesian methodology compares well
with the usual interpretation of effective mass tables produced by a
variational procedure. Applications of the methodology are discussed.Comment: 12 pages, 8 figures, 8 tables, major revision, final versio
- …
