16 research outputs found
Mechanical restriction versus human overreaction triggering congested traffic states
A new cellular automaton (CA) traffic model is presented. The focus is on
mechanical restrictions of vehicles realized by limited acceleration and
deceleration capabilities. These features are incorporated into the model in
order to construct the condition of collision-free movement. The strict
collision-free criterion imposed by the mechanical restrictions is softened in
certain traffic situations, reflecting human overreaction. It is shown that the
present model reliably reproduces most empirical findings including
synchronized flow, the so-called {\it pinch effect}, and the time-headway
distribution of free flow. The findings suggest that many free flow phenomena
can be attributed to the platoon formation of vehicles ({\it platoon effect})Comment: 5 pages, 3 figures, to appear in PR
Macroscopic traffic models from microscopic car-following models
We present a method to derive macroscopic fluid-dynamic models from
microscopic car-following models via a coarse-graining procedure. The method is
first demonstrated for the optimal velocity model. The derived macroscopic
model consists of a conservation equation and a momentum equation, and the
latter contains a relaxation term, an anticipation term, and a diffusion term.
Properties of the resulting macroscopic model are compared with those of the
optimal velocity model through numerical simulations, and reasonable agreement
is found although there are deviations in the quantitative level. The
derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.
Traffic and Related Self-Driven Many-Particle Systems
Since the subject of traffic dynamics has captured the interest of
physicists, many astonishing effects have been revealed and explained. Some of
the questions now understood are the following: Why are vehicles sometimes
stopped by so-called ``phantom traffic jams'', although they all like to drive
fast? What are the mechanisms behind stop-and-go traffic? Why are there several
different kinds of congestion, and how are they related? Why do most traffic
jams occur considerably before the road capacity is reached? Can a temporary
reduction of the traffic volume cause a lasting traffic jam? Under which
conditions can speed limits speed up traffic? Why do pedestrians moving in
opposite directions normally organize in lanes, while similar systems are
``freezing by heating''? Why do self-organizing systems tend to reach an
optimal state? Why do panicking pedestrians produce dangerous deadlocks? All
these questions have been answered by applying and extending methods from
statistical physics and non-linear dynamics to self-driven many-particle
systems. This review article on traffic introduces (i) empirically data, facts,
and observations, (ii) the main approaches to pedestrian, highway, and city
traffic, (iii) microscopic (particle-based), mesoscopic (gas-kinetic), and
macroscopic (fluid-dynamic) models. Attention is also paid to the formulation
of a micro-macro link, to aspects of universality, and to other unifying
concepts like a general modelling framework for self-driven many-particle
systems, including spin systems. Subjects such as the optimization of traffic
flows and relations to biological or socio-economic systems such as bacterial
colonies, flocks of birds, panics, and stock market dynamics are discussed as
well.Comment: A shortened version of this article will appear in Reviews of Modern
Physics, an extended one as a book. The 63 figures were omitted because of
storage capacity. For related work see http://www.helbing.org
