464 research outputs found
Population Inversion in Monolayer and Bilayer Graphene
The recent demonstration of saturable absorption and negative optical
conductivity in the Terahertz range in graphene has opened up new opportunities
for optoelectronic applications based on this and other low dimensional
materials. Recently, population inversion across the Dirac point has been
observed directly by time- and angle-resolved photoemission spectroscopy
(tr-ARPES), revealing a relaxation time of only ~ 130 femtoseconds. This
severely limits the applicability of single layer graphene to, for example,
Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived
population inversion in bilayer graphene. The effect is attributed to the small
band gap found in this compound. We propose a microscopic model for these
observations and speculate that an enhancement of both the pump photon energy
and the pump fluence may further increase this lifetime.Comment: 18 pages, 6 figure
Probing the structure and dynamics of molecular clusters using rotational wavepackets
The chemical and physical properties of molecular clusters can heavily depend
on their size, which makes them very attractive for the design of new materials
with tailored properties. Deriving the structure and dynamics of clusters is
therefore of major interest in science. Weakly bound clusters can be studied
using conventional spectroscopic techniques, but the number of lines observed
is often too small for a comprehensive structural analysis. Impulsive alignment
generates rotational wavepackets, which provides simultaneous information on
structure and dynamics, as has been demonstrated successfully for isolated
molecules. Here, we apply this technique for the firsttime to clusters
comprising of a molecule and a single helium atom. By forcing the population of
high rotational levels in intense laser fields we demonstrate the generation of
rich rotational line spectra for this system, establishing the highly
delocalised structure and the coherence of rotational wavepacket propagation.
Our findings enable studies of clusters of different sizes and complexity as
well as incipient superfluidity effects using wavepacket methods.Comment: 5 pages, 6 figure
Quantum Quenching of Radiation Losses in Short Laser Pulses
Acceptance date not available: used date of last revision on arXi
Mapping the Evolution of Optically-Generated Rotational Wavepackets in a Room Temperature Ensemble of D
A coherent superposition of rotational states in D has been excited by
nonresonant ultrafast (12 femtosecond) intense (2 10
Wcm) 800 nm laser pulses leading to impulsive dynamic alignment.
Field-free evolution of this rotational wavepacket has been mapped to high
temporal resolution by a time-delayed pulse, initiating rapid double
ionization, which is highly sensitive to the angle of orientation of the
molecular axis with respect to the polarization direction, . The
detailed fractional revivals of the neutral D wavepacket as a function of
and evolution time have been observed and modelled theoretically.Comment: 4 pages, 3 figures. Accepted for publication in Phys. Rev. A. Full
reference to follow.
Evidence of reduced surface electron-phonon scattering in the conduction band of Bi_{2}Se_{3} by non-equilibrium ARPES
The nature of the Dirac quasiparticles in topological insulators calls for a
direct investigation of the electron-phonon scattering at the \emph{surface}.
By comparing time-resolved ARPES measurements of the TI Bi_{2}Se_{3} with
different probing depths we show that the relaxation dynamics of the electronic
temperature of the conduction band is much slower at the surface than in the
bulk. This observation suggests that surface phonons are less effective in
cooling the electron gas in the conduction band.Comment: 5 pages, 3 figure
Possible observation of parametrically amplified coherent phasons in K0.3MoO3 using time-resolved extreme-ultraviolet ARPES
We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) in the
Extreme Ultraviolet (EUV) to measure the time- and momentum-dependent
electronic structure of photo-excited K0.3MoO3. Prompt depletion of the Charge
Density Wave (CDW) condensate launches coherent oscillations of the amplitude
mode, observed as a 1.7-THz-frequency modulation of the bonding band position.
In contrast, the anti-bonding band oscillates at about half this frequency. We
attribute these oscillations to coherent excitation of phasons via parametric
amplification of phase fluctuations.Comment: 4 figure
Atomic excitation during recollision-free ultrafast multi-electron tunnel ionization
Modern intense ultrafast pulsed lasers generate an electric field of
sufficient strength to permit tunnel ionization of the valence electrons in
atoms. This process is usually treated as a rapid succession of isolated
events, in which the states of the remaining electrons are neglected. Such
electronic interactions are predicted to be weak, the exception being
recollision excitation and ionization caused by linearly-polarized radiation.
In contrast, it has recently been suggested that intense field ionization may
be accompanied by a two-stage `shake-up' reaction. Here we report a unique
combination of experimental techniques that enables us to accurately measure
the tunnel ionization probability for argon exposed to 50 femtosecond laser
pulses. Most significantly for the current study, this measurement is
independent of the optical focal geometry, equivalent to a homogenous electric
field. Furthermore, circularly-polarized radiation negates recollision. The
present measurements indicate that tunnel ionization results in simultaneous
excitation of one or more remaining electrons through shake-up. From an atomic
physics standpoint, it may be possible to induce ionization from specific
states, and will influence the development of coherent attosecond XUV radiation
sources. Such pulses have vital scientific and economic potential in areas such
as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.Comment: 17 pages, 4 figures, original format as accepted by Nature Physic
- …
