1,148 research outputs found
Nonparametric Bayesian Mixed-effect Model: a Sparse Gaussian Process Approach
Multi-task learning models using Gaussian processes (GP) have been developed
and successfully applied in various applications. The main difficulty with this
approach is the computational cost of inference using the union of examples
from all tasks. Therefore sparse solutions, that avoid using the entire data
directly and instead use a set of informative "representatives" are desirable.
The paper investigates this problem for the grouped mixed-effect GP model where
each individual response is given by a fixed-effect, taken from one of a set of
unknown groups, plus a random individual effect function that captures
variations among individuals. Such models have been widely used in previous
work but no sparse solutions have been developed. The paper presents the first
sparse solution for such problems, showing how the sparse approximation can be
obtained by maximizing a variational lower bound on the marginal likelihood,
generalizing ideas from single-task Gaussian processes to handle the
mixed-effect model as well as grouping. Experiments using artificial and real
data validate the approach showing that it can recover the performance of
inference with the full sample, that it outperforms baseline methods, and that
it outperforms state of the art sparse solutions for other multi-task GP
formulations.Comment: Preliminary version appeared in ECML201
Risk factors for obstructive sleep apnea syndrome in children: state of the art
The obstructive sleep apnea syndrome (OSAS) represents only part of a large group of pathologies of variable entity called respiratory sleep disorders (RSD) which include simple snoring and increased upper airway resistance syndrome (UARS). Although the etiopathogenesis of adult OSAS is well known, many aspects of this syndrome in children are still debated. Its prevalence is about 2% in children from 2 to 8 years of age, mostly related to the size of the upper airways adenoid tissue. Several risk factors linked to the development of OSAS are typical of the pediatric age. The object of this paper is to analyze the state of the art on this specific topic, discussing its implications in terms of diagnosis and management
Noncommutative Electrodynamics
In this paper we define a causal Lorentz covariant noncommutative (NC)
classical Electrodynamics. We obtain an explicit realization of the NC theory
by solving perturbatively the Seiberg-Witten map. The action is polynomial in
the field strenght , allowing to preserve both causality and Lorentz
covariance. The general structure of the Lagrangian is studied, to all orders
in the perturbative expansion in the NC parameter . We show that
monochromatic plane waves are solutions of the equations of motion to all
orders. An iterative method has been developed to solve the equations of motion
and has been applied to the study of the corrections to the superposition law
and to the Coulomb law.Comment: 13 pages, 2 figures, one reference adde
Analytic Results for Virtual QCD Corrections to Higgs Production and Decay
We consider the production of a Higgs boson via gluon-fusion and its decay
into two photons. We compute the NLO virtual QCD corrections to these processes
in a general framework in which the coupling of the Higgs boson to the external
particles is mediated by a colored fermion and a colored scalar. We present
compact analytic results for these two-loop corrections that are expressed in
terms of Harmonic Polylogarithms. The expansion of these corrections in the low
and high Higgs mass regimes, as well as the expression of the new Master
Integrals which appear in the reduction of the two-loop amplitudes, are also
provided. For the fermionic contribution, we provide an independent check of
the results already present in the literature concerning the Higgs boson and
the production and decay of a pseudoscalar particle.Comment: 19 pages, 3 figures, version accepted by JHE
Scalar Particle Contribution to Higgs Production via Gluon Fusion at NLO
We consider the gluon fusion production cross section of a scalar Higgs boson
in models where fermion and scalar massive colored particles are present. We
report analytic expressions for the matrix elements of , , and processes completing the calculation of the NLO QCD
corrections in these extended scenarios. The formulas are written in a complete
general case, allowing a flexible use for different theoretical models.
Applications of our results to two different models are presented: i) a model
in which the SM Higgs sector is augmented by a weak doublet scalar in the
adjoint representation. ii) The MSSM, in the limit of neglecting the
gluino contribution to the cross section.Comment: 20 pages, 5 figures. Minor changes. Refs. adde
GPU-based Real-time Triggering in the NA62 Experiment
Over the last few years the GPGPU (General-Purpose computing on Graphics
Processing Units) paradigm represented a remarkable development in the world of
computing. Computing for High-Energy Physics is no exception: several works
have demonstrated the effectiveness of the integration of GPU-based systems in
high level trigger of different experiments. On the other hand the use of GPUs
in the low level trigger systems, characterized by stringent real-time
constraints, such as tight time budget and high throughput, poses several
challenges. In this paper we focus on the low level trigger in the CERN NA62
experiment, investigating the use of real-time computing on GPUs in this
synchronous system. Our approach aimed at harvesting the GPU computing power to
build in real-time refined physics-related trigger primitives for the RICH
detector, as the the knowledge of Cerenkov rings parameters allows to build
stringent conditions for data selection at trigger level. Latencies of all
components of the trigger chain have been analyzed, pointing out that
networking is the most critical one. To keep the latency of data transfer task
under control, we devised NaNet, an FPGA-based PCIe Network Interface Card
(NIC) with GPUDirect capabilities. For the processing task, we developed
specific multiple ring trigger algorithms to leverage the parallel architecture
of GPUs and increase the processing throughput to keep up with the high event
rate. Results obtained during the first months of 2016 NA62 run are presented
and discussed
Proceedings of the Workshop on Monte Carlo's, Physics and Simulations at the LHC PART II
These proceedings collect the presentations given at the first three meetings
of the INFN "Workshop on Monte Carlo's, Physics and Simulations at the LHC",
held at the Frascati National Laboratories in 2006. The first part of these
proceedings contains pedagogical introductions to several basic topics of both
theoretical and experimental high pT LHC physics. The second part collects more
specialised presentations.Comment: 157 pages, 136 figures; contribution by M. Grazzini has been adde
NEMO: A Project for a km Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea
The status of the project is described: the activity on long term
characterization of water optical and oceanographic parameters at the Capo
Passero site candidate for the Mediterranean km neutrino telescope; the
feasibility study; the physics performances and underwater technology for the
km; the activity on NEMO Phase 1, a technological demonstrator that has
been deployed at 2000 m depth 25 km offshore Catania; the realization of an
underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).Comment: Proceeding of ISCRA 2006, Erice 20-27 June 200
- …
