1,558 research outputs found
Universally Composable Quantum Multi-Party Computation
The Universal Composability model (UC) by Canetti (FOCS 2001) allows for
secure composition of arbitrary protocols. We present a quantum version of the
UC model which enjoys the same compositionality guarantees. We prove that in
this model statistically secure oblivious transfer protocols can be constructed
from commitments. Furthermore, we show that every statistically classically UC
secure protocol is also statistically quantum UC secure. Such implications are
not known for other quantum security definitions. As a corollary, we get that
quantum UC secure protocols for general multi-party computation can be
constructed from commitments
Unambiguous state discrimination in quantum cryptography with weak coherent states
The use of linearly independent signal states in realistic implementations of
quantum key distribution (QKD) enables an eavesdropper to perform unambiguous
state discrimination. We explore quantitatively the limits for secure QKD
imposed by this fact taking into account that the receiver can monitor to some
extend the photon number statistics of the signals even with todays standard
detection schemes. We compare our attack to the beamsplitting attack and show
that security against beamsplitting attack does not necessarily imply security
against the attack considered here.Comment: 10 pages, 6 figures, updated version with added discussion of
beamsplitting attac
Quantum strategies
We consider game theory from the perspective of quantum algorithms.
Strategies in classical game theory are either pure (deterministic) or mixed
(probabilistic). We introduce these basic ideas in the context of a simple
example, closely related to the traditional Matching Pennies game. While not
every two-person zero-sum finite game has an equilibrium in the set of pure
strategies, von Neumann showed that there is always an equilibrium at which
each player follows a mixed strategy. A mixed strategy deviating from the
equilibrium strategy cannot increase a player's expected payoff. We show,
however, that in our example a player who implements a quantum strategy can
increase his expected payoff, and explain the relation to efficient quantum
algorithms. We prove that in general a quantum strategy is always at least as
good as a classical one, and furthermore that when both players use quantum
strategies there need not be any equilibrium, but if both are allowed mixed
quantum strategies there must be.Comment: 8 pages, plain TeX, 1 figur
The Uncertainty Principle in the Presence of Quantum Memory
The uncertainty principle, originally formulated by Heisenberg, dramatically
illustrates the difference between classical and quantum mechanics. The
principle bounds the uncertainties about the outcomes of two incompatible
measurements, such as position and momentum, on a particle. It implies that one
cannot predict the outcomes for both possible choices of measurement to
arbitrary precision, even if information about the preparation of the particle
is available in a classical memory. However, if the particle is prepared
entangled with a quantum memory, a device which is likely to soon be available,
it is possible to predict the outcomes for both measurement choices precisely.
In this work we strengthen the uncertainty principle to incorporate this case,
providing a lower bound on the uncertainties which depends on the amount of
entanglement between the particle and the quantum memory. We detail the
application of our result to witnessing entanglement and to quantum key
distribution.Comment: 5 pages plus 12 of supplementary information. Updated to match the
journal versio
Spatially resolved spectroscopy of monolayer graphene on SiO2
We have carried out scanning tunneling spectroscopy measurements on
exfoliated monolayer graphene on SiO to probe the correlation between its
electronic and structural properties. Maps of the local density of states are
characterized by electron and hole puddles that arise due to long range
intravalley scattering from intrinsic ripples in graphene and random charged
impurities. At low energy, we observe short range intervalley scattering which
we attribute to lattice defects. Our results demonstrate that the electronic
properties of graphene are influenced by intrinsic ripples, defects and the
underlying SiO substrate.Comment: 6 pages, 7 figures, extended versio
Continuous variable quantum cryptography
We propose a quantum cryptographic scheme in which small phase and amplitude
modulations of CW light beams carry the key information. The presence of EPR
type correlations provides the quantum protection.Comment: 8 pages, 3 figure
Relativistic quantum coin tossing
A relativistic quantum information exchange protocol is proposed allowing two
distant users to realize ``coin tossing'' procedure. The protocol is based on
the point that in relativistic quantum theory reliable distinguishing between
the two orthogonal states generally requires a finite time depending on the
structure of these states.Comment: 6 pages, no figure
Classical Ising model test for quantum circuits
We exploit a recently constructed mapping between quantum circuits and graphs
in order to prove that circuits corresponding to certain planar graphs can be
efficiently simulated classically. The proof uses an expression for the Ising
model partition function in terms of quadratically signed weight enumerators
(QWGTs), which are polynomials that arise naturally in an expansion of quantum
circuits in terms of rotations involving Pauli matrices. We combine this
expression with a known efficient classical algorithm for the Ising partition
function of any planar graph in the absence of an external magnetic field, and
the Robertson-Seymour theorem from graph theory. We give as an example a set of
quantum circuits with a small number of non-nearest neighbor gates which admit
an efficient classical simulation.Comment: 17 pages, 2 figures. v2: main result strengthened by removing
oracular settin
- …
