1,558 research outputs found

    Universally Composable Quantum Multi-Party Computation

    Full text link
    The Universal Composability model (UC) by Canetti (FOCS 2001) allows for secure composition of arbitrary protocols. We present a quantum version of the UC model which enjoys the same compositionality guarantees. We prove that in this model statistically secure oblivious transfer protocols can be constructed from commitments. Furthermore, we show that every statistically classically UC secure protocol is also statistically quantum UC secure. Such implications are not known for other quantum security definitions. As a corollary, we get that quantum UC secure protocols for general multi-party computation can be constructed from commitments

    Unambiguous state discrimination in quantum cryptography with weak coherent states

    Full text link
    The use of linearly independent signal states in realistic implementations of quantum key distribution (QKD) enables an eavesdropper to perform unambiguous state discrimination. We explore quantitatively the limits for secure QKD imposed by this fact taking into account that the receiver can monitor to some extend the photon number statistics of the signals even with todays standard detection schemes. We compare our attack to the beamsplitting attack and show that security against beamsplitting attack does not necessarily imply security against the attack considered here.Comment: 10 pages, 6 figures, updated version with added discussion of beamsplitting attac

    Quantum strategies

    Full text link
    We consider game theory from the perspective of quantum algorithms. Strategies in classical game theory are either pure (deterministic) or mixed (probabilistic). We introduce these basic ideas in the context of a simple example, closely related to the traditional Matching Pennies game. While not every two-person zero-sum finite game has an equilibrium in the set of pure strategies, von Neumann showed that there is always an equilibrium at which each player follows a mixed strategy. A mixed strategy deviating from the equilibrium strategy cannot increase a player's expected payoff. We show, however, that in our example a player who implements a quantum strategy can increase his expected payoff, and explain the relation to efficient quantum algorithms. We prove that in general a quantum strategy is always at least as good as a classical one, and furthermore that when both players use quantum strategies there need not be any equilibrium, but if both are allowed mixed quantum strategies there must be.Comment: 8 pages, plain TeX, 1 figur

    The Uncertainty Principle in the Presence of Quantum Memory

    Full text link
    The uncertainty principle, originally formulated by Heisenberg, dramatically illustrates the difference between classical and quantum mechanics. The principle bounds the uncertainties about the outcomes of two incompatible measurements, such as position and momentum, on a particle. It implies that one cannot predict the outcomes for both possible choices of measurement to arbitrary precision, even if information about the preparation of the particle is available in a classical memory. However, if the particle is prepared entangled with a quantum memory, a device which is likely to soon be available, it is possible to predict the outcomes for both measurement choices precisely. In this work we strengthen the uncertainty principle to incorporate this case, providing a lower bound on the uncertainties which depends on the amount of entanglement between the particle and the quantum memory. We detail the application of our result to witnessing entanglement and to quantum key distribution.Comment: 5 pages plus 12 of supplementary information. Updated to match the journal versio

    Spatially resolved spectroscopy of monolayer graphene on SiO2

    Full text link
    We have carried out scanning tunneling spectroscopy measurements on exfoliated monolayer graphene on SiO2_2 to probe the correlation between its electronic and structural properties. Maps of the local density of states are characterized by electron and hole puddles that arise due to long range intravalley scattering from intrinsic ripples in graphene and random charged impurities. At low energy, we observe short range intervalley scattering which we attribute to lattice defects. Our results demonstrate that the electronic properties of graphene are influenced by intrinsic ripples, defects and the underlying SiO2_2 substrate.Comment: 6 pages, 7 figures, extended versio

    Continuous variable quantum cryptography

    Get PDF
    We propose a quantum cryptographic scheme in which small phase and amplitude modulations of CW light beams carry the key information. The presence of EPR type correlations provides the quantum protection.Comment: 8 pages, 3 figure

    Relativistic quantum coin tossing

    Get PDF
    A relativistic quantum information exchange protocol is proposed allowing two distant users to realize ``coin tossing'' procedure. The protocol is based on the point that in relativistic quantum theory reliable distinguishing between the two orthogonal states generally requires a finite time depending on the structure of these states.Comment: 6 pages, no figure

    Classical Ising model test for quantum circuits

    Full text link
    We exploit a recently constructed mapping between quantum circuits and graphs in order to prove that circuits corresponding to certain planar graphs can be efficiently simulated classically. The proof uses an expression for the Ising model partition function in terms of quadratically signed weight enumerators (QWGTs), which are polynomials that arise naturally in an expansion of quantum circuits in terms of rotations involving Pauli matrices. We combine this expression with a known efficient classical algorithm for the Ising partition function of any planar graph in the absence of an external magnetic field, and the Robertson-Seymour theorem from graph theory. We give as an example a set of quantum circuits with a small number of non-nearest neighbor gates which admit an efficient classical simulation.Comment: 17 pages, 2 figures. v2: main result strengthened by removing oracular settin

    Semiconductor Noise

    Get PDF
    Contains reports on two research projects
    corecore