2,563 research outputs found
Star-Like Micelles with Star-Like Interactions: A quantitative Evaluation of Structure Factor and Phase Diagram
PEP-PEO block copolymer micelles offer the possibility to investigate phase
behaviour and interactions of star polymers (ultra-soft colloids). A star-like
architecture is achieved by an extremely asymmetric block ratio (1:20).
Micellar functionality f can be smoothly varied by changing solvent composition
(interfacial tension). Structure factors obtained by SANS can be quantitatively
described in terms of an effective potential developed for star polymers. The
experimental phase diagram reproduces to a high level of accuracy the predicted
liquid/solid transition. Whereas for intermediate f a bcc phase is observed,
for high f the formation of a fcc phase is preempted by glass formation.Comment: 5 pages, 4 figures, PRL in pres
Interferometric imaging of the high-redshift radio galaxy, 4C60.07: An SMA, Spitzer and VLA study reveals a binary AGN/starburst
‘The definitive version is available at www3.interscience.wiley.com '. Copyright Blackwell / RAS. DOI: 10.1111/j.1365-2966.2008.13811.xPeer reviewe
Coherent electronic and nuclear dynamics in a rhodamine heterodimer-DNA supramolecular complex
Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm-1 (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution. © 2017 the Owner Societies.Multi valued and parallel molecular logi
S-CANDELS: The Spitzer-Cosmic Assembly Near-Infrared Deep Extragalactic Survey. Survey Design, Photometry, and Deep IRAC Source Counts
The Spitzer-Cosmic Assembly Deep Near-Infrared Extragalactic Legacy Survey
(S-CANDELS; PI G. Fazio) is a Cycle 8 Exploration Program designed to detect
galaxies at very high redshifts (z > 5). To mitigate the effects of cosmic
variance and also to take advantage of deep coextensive coverage in multiple
bands by the Hubble Space Telescope Multi-Cycle Treasury Program CANDELS,
S-CANDELS was carried out within five widely separated extragalactic fields:
the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS,
the HST Deep Field North, and the Extended Groth Strip. S-CANDELS builds upon
the existing coverage of these fields from the Spitzer Extended Deep Survey
(SEDS) by increasing the integration time from 12 hours to a total of 50 hours
but within a smaller area, 0.16 square degrees. The additional depth
significantly increases the survey completeness at faint magnitudes. This paper
describes the S-CANDELS survey design, processing, and publicly-available data
products. We present IRAC dual-band 3.6+4.5 micron catalogs reaching to a depth
of 26.5 AB mag. Deep IRAC counts for the roughly 135,000 galaxies detected by
S-CANDELS are consistent with models based on known galaxy populations. The
increase in depth beyond earlier Spitzer/IRAC surveys does not reveal a
significant additional contribution from discrete sources to the diffuse Cosmic
Infrared Background (CIB). Thus it remains true that only roughly half of the
estimated CIB flux from COBE/DIRBE is resolved.Comment: 23 pages, 19 figures, accepted by ApJ
The Most Luminous z~9-10 Galaxy Candidates yet Found: The Luminosity Function, Cosmic Star-Formation Rate, and the First Mass Density Estimate at 500 Myr
[abridged] We present the discovery of four surprisingly bright (H_160 ~ 26 -
27 mag AB) galaxy candidates at z~9-10 in the complete HST CANDELS WFC3/IR
GOODS-N imaging data, doubling the number of z~10 galaxy candidates that are
known, just ~500 Myr after the Big Bang. Two similarly bright sources are also
detected in a systematic re-analysis of the GOODS-S data set. Three of the four
galaxies in GOODS-N are significantly detected at 4.5-6.2sigma in the very deep
Spitzer/IRAC 4.5 micron data, as is one of the GOODS-S candidates. Furthermore,
the brightest of our candidates (at z=10.2+-0.4) is robustly detected also at
3.6 micron (6.9sigma), revealing a flat UV spectral energy distribution with a
slope beta=-2.0+-0.2, consistent with demonstrated trends with luminosity at
high redshift. The abundance of such luminous candidates suggests that the
luminosity function evolves more significantly in phi_* than in L_* at z>~8
with a higher number density of bright sources than previously expected.
Despite the discovery of these luminous candidates, the cosmic star formation
rate density for galaxies with SFR >0.7 M_sun/yr shows an order-of-magnitude
increase in only 170 Myr from z ~ 10 to z ~ 8, consistent with previous
results. Based on the IRAC detections, we derive galaxy stellar masses at z~10,
finding that these luminous objects are typically 10^9 M_sun. The cosmic
stellar mass density at z~10 is log10 rho_* = 4.7^+0.5_-0.8 M_sun Mpc^-3 for
galaxies brighter than M_UV~-18. The remarkable brightness, and hence
luminosity, of these z~9-10 candidates highlights the opportunity for deep
spectroscopy to determine their redshift and nature, demonstrates the value of
additional search fields covering a wider area to understand star-formation in
the very early universe, and highlights the opportunities for JWST to map the
buildup of galaxies at redshifts much earlier than z~10.Comment: 20 pages, 12 figures, changed to match resubmitted version to Ap
The AGN Contribution to the Mid-IR Emission of Luminous Infrared Galaxies
We determine the contribution of AGN to the mid-IR emission of luminous
infrared galaxies (LIRGs) at z>0.6 by measuring the mid-IR dust continuum slope
of 20,039 mid-IR sources. The 24 micron sources are selected from a
Spitzer/MIPS survey of the NOAO Deep Wide-Field Survey Bo\"otes field and have
corresponding 8 micron data from the IRAC Shallow Survey. There is a clear
bimodal distribution in the 24 micron to 8 micron flux ratio. The X-ray
detected sources fall within the peak corresponding to a flat spectrum in
nufnu, implying that it is populated by AGN-dominated LIRGs, whereas the peak
corresponding to a higher 24 micron to 8 micron flux ratio is likely due to
LIRGs whose infrared emission is powered by starbursts. The 24 micron emission
is increasingly dominated by AGN at higher 24 micron flux densities (f_24): the
AGN fraction of the z>0.6 sources increases from ~9% at f_24 ~ 0.35 mJy to
74+/-20% at f_24 ~ 3 mJy in good agreement with model predictions. Deep 24
micron, small area surveys, like GOODS, will be strongly dominated by starburst
galaxies. AGN are responsible for ~ 3-7% of the total 24 micron background.Comment: 6 pages, accepted for publication in Ap
A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2
Observations with Spitzer Space Telescope have recently revealed a
significant population of high-redshift z~2 dust-obscured galaxies (DOGs) with
large mid-IR to UV luminosity ratios. These galaxies have been missed in
traditional optical studies of the distant universe. We present a simple method
for selecting this high-z population based solely on the ratio of the observed
mid-IR 24um to optical R-band flux density. In the 8.6 sq.deg Bootes NDWFS
Field, we uncover ~2,600 DOG candidates (= 0.089/sq.arcmin) with 24um flux
densities F24>0.3mJy and (R-[24])>14 (i.e., F[24]/F[R] > 1000). These galaxies
have no counterparts in the local universe, and become a larger fraction of the
population at fainter F24, representing 13% of the sources at 0.3~mJy. DOGs
exhibit evidence of both star-formation and AGN activity, with the brighter
24um sources being more AGN- dominated. We have measured spectroscopic
redshifts for 86 DOGs, and find a broad z distribution centered at ~2.0.
Their space density is 2.82E-5 per cubic Mpc, similar to that of bright
sub-mm-selected galaxies at z~2. These redshifts imply very large luminosities
LIR>~1E12-14 Lsun. DOGs contribute ~45-100% of the IR luminosity density
contributed by all z~2 ULIRGs, suggesting that our simple selection criterion
identifies the bulk of z~2 ULIRGs. DOGs may be the progenitors of ~4L*
present-day galaxies seen undergoing a luminous,short- lived phase of bulge and
black hole growth. They may represent a brief evolution phase between SMGs and
less obscured quasars or galaxies. [Abridged]Comment: Accepted for publication in the Astrophysical Journa
Spitzer IRS Spectra of Optically Faint Infrared Sources with Weak Spectral Features
Spectra have been obtained with the low-resolution modules of the Infrared
Spectrograph (IRS) on the Spitzer Space Telescope (Spitzer) for 58 sources
having f(24 micron) > 0.75 mJy. Sources were chosen from a survey of
8.2 deg within the NOAO Deep Wide-Field Survey region in Bootes (NDWFS)
using the Multiband Imaging Photometer (MIPS) on the Spitzer Space Telescope.
Most sources are optically very faint (I > 24mag). Redshifts have previously
been determined for 34 sources, based primarily on the presence of a deep 9.7
micron silicate absorption feature, with a median z of 2.2. Spectra are
presented for the remaining 24 sources for which we were previously unable to
determine a confident redshift because the IRS spectra show no strong features.
Optical photometry from the NDWFS and infrared photometry with MIPS and the
Infrared Array Camera on the Spitzer Space Telescope (IRAC) are given, with K
photometry from the Keck I telescope for some objects. The sources without
strong spectral features have overall spectral energy distributions (SEDs) and
distributions among optical and infrared fluxes which are similar to those for
the sources with strong absorption features. Nine of the 24 sources are found
to have feasible redshift determinations based on fits of a weak silicate
absorption feature. Results confirm that the "1 mJy" population of 24 micron
Spitzer sources which are optically faint is dominated by dusty sources with
spectroscopic indicators of an obscured AGN rather than a starburst. There
remain 14 of the 58 sources observed in Bootes for which no redshift could be
estimated, and 5 of these sources are invisible at all optical wavelengths.Comment: Accepted by Ap
Development of new all-optical signal regeneration technique
All-optical signal regeneration have been the active research area since last decade due to evolution of nonlinear optical signal processing. Existing all-optical signal regeneration techniques are agitated in producing low Bit Error Rate (BER) of 10-10 at below than -10 dBm power received. In this paper, a new all-optical signal regeneration technique is developed by using phase sensitive amplification and designed optical phase locked signal mechanism. The developed all-optical signal regeneration technique is tested for different 10 Gb/s Differential Phase Shift Keying degraded signals. It is determined that the designed all-optical signal regeneration technique is able to provide signal regeneration with noise mitigation for degraded signals. It is analyzed that overall, for all degraded test signals, average BER of 10-13 is achieved at received power of -14 dBm. The designed technique will be helpful to enhance the performance of existing signal regeneration systems in the presence of severe noise by providing minimum BER at low received power
Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices
H2O is the most abundant component of astrophysical ices. In most lines of
sight it is not possible to fit both the H2O 3 um stretching, the 6 um bending
and the 13 um libration band intensities with a single pure H2O spectrum.
Recent Spitzer observations have revealed CO2 ice in high abundances and it has
been suggested that CO2 mixed into H2O ice can affect relative strengths of the
3 um and 6 um bands. We used laboratory infrared transmission spectroscopy of
H2O:CO2 ice mixtures to investigate the effects of CO2 on H2O ice spectral
features at 15-135 K. We find that the H2O peak profiles and band strengths are
significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. In
all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 um,
which can be used to put an upper limit on the CO2 concentration in the H2O
ice. The H2O bending mode profile also changes drastically with CO2
concentration; the broad pure H2O band gives way to two narrow bands as the CO2
concentration is increased. This makes it crucial to constrain the environment
of H2O ice to enable correct assignments of other species contributing to the
interstellar 6 um absorption band. The amount of CO2 present in the H2O ice of
B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending
regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and
HCOOH.Comment: 12 pages, 11 figures, accepted by A&
- …
