282 research outputs found
Search for sterile neutrinos at the DANSS experiment
DANSS is a highly segmented 1~m plastic scintillator detector. Its 2500
one meter long scintillator strips have a Gd-loaded reflective cover. The DANSS
detector is placed under an industrial 3.1~ reactor of the
Kalinin Nuclear Power Plant 350~km NW from Moscow. The distance to the core is
varied on-line from 10.7~m to 12.7~m. The reactor building provides about 50~m
water-equivalent shielding against the cosmic background. DANSS detects almost
5000 per day at the closest position with the cosmic
background less than 3. The inverse beta decay process is used to detect
. Sterile neutrinos are searched for assuming the model
(3 active and 1 sterile ). The exclusion area in the plane is obtained using a ratio of positron energy
spectra collected at different distances. Therefore results do not depend on
the shape and normalization of the reactor spectrum, as well
as on the detector efficiency. Results are based on 966 thousand antineutrino
events collected at 3 distances from the reactor core. The excluded area covers
a wide range of the sterile neutrino parameters up to
in the most sensitive region.Comment: 10 pages, 13 figures, version accepted for publicatio
DANSSino: a pilot version of the DANSS neutrino detector
DANSSino is a reduced pilot version of a solid-state detector of reactor
antineutrinos (to be created within the DANSS project and installed under the
industrial 3 GW(th) reactor of the Kalinin Nuclear Power Plant -- KNPP).
Numerous tests performed at a distance of 11 m from the reactor core
demonstrate operability of the chosen design and reveal the main sources of the
background. In spite of its small size (20x20x100 ccm), the pilot detector
turned out to be quite sensitive to reactor antineutrinos, detecting about 70
IBD events per day with the signal-to-background ratio about unity.Comment: 16 pages, 11 figures, 3 tables. arXiv admin note: substantial text
overlap with arXiv:1304.369
Contamination Control and Assay Results for the Majorana Demonstrator Ultra Clean Components
The MAJORANA DEMONSTRATOR is a neutrinoless double beta decay experiment
utilizing enriched Ge-76 detectors in 2 separate modules inside of a common
solid shield at the Sanford Underground Research Facility. The DEMONSTRATOR has
utilized world leading assay sensitivities to develop clean materials and
processes for producing ultra-pure copper and plastic components. This
experiment is now operating, and initial data provide new insights into the
success of cleaning and processing. Post production copper assays after the
completion of Module 1 showed an increase in U and Th contamination in finished
parts compared to starting bulk material. A revised cleaning method and
additional round of surface contamination studies prior to Module 2
construction have provided evidence that more rigorous process control can
reduce surface contamination. This article describes the assay results and
discuss further studies to take advantage of assay capabilities for the purpose
of maintaining ultra clean fabrication and process design.Comment: Proceedings of Low Radioactivity Techniques (LRT May 2017, Seoul
Low Background Materials and Fabrication Techniques for Cables and Connectors in the Majorana Demonstrator
The MAJORANA Collaboration is searching for the neutrinoless double-beta
decay of the nucleus Ge-76. The MAJORANA DEMONSTRATOR is an array of germanium
detectors deployed with the aim of implementing background reduction techniques
suitable for a tonne scale Ge-76-based search (the LEGEND collaboration). In
the DEMONSTRATOR, germanium detectors operate in an ultra-pure vacuum cryostat
at 80 K. One special challenge of an ultra-pure environment is to develop
reliable cables, connectors, and electronics that do not significantly
contribute to the radioactive background of the experiment. This paper
highlights the experimental requirements and how these requirements were met
for the MAJORANA DEMONSTRATOR, including plans to upgrade the wiring for higher
reliability in the summer of 2018. Also described are requirements for LEGEND
R&D efforts underway to meet these additional requirements.Comment: Proceedings of LRT 201
- …
