32,903 research outputs found
Stability of the Magnetic Monopole Condensate in three- and four-colour QCD
It is argued that the ground state of three- and four-colour QCD contains a
monopole condensate, necessary for the dual Meissner effect to be the mechanism
of confinement, and support its stability on the grounds that it gives the
off-diagonal gluons an effective mass sufficient to remove the unstable ground
state mode.Comment: jhep.cls, typos corrected, references added, some content delete
Magnetic Field Structure and Stochastic Reconnection in a Partially Ionized Gas
We consider stochastic reconnection in a magnetized, partially ionized
medium. Stochastic reconnection is a generic effect, due to field line
wandering, in which the speed of reconnection is determined by the ability of
ejected plasma to diffuse away from the current sheet along magnetic field
lines, rather than by the details of current sheet structure. We consider the
limit of weak stochasticity, so that the mean magnetic field energy density is
greater than either the turbulent kinetic energy density or the energy density
associated with the fluctuating component of the field. We consider field line
stochasticity generated through a turbulent cascade, which leads us to consider
the effect of neutral drag on the turbulent cascade of energy. In a
collisionless plasma, neutral particle viscosity and ion-neutral drag will damp
mid-scale turbulent motions, but the power spectrum of the magnetic
perturbations extends below the viscous cutoff scale. We give a simple physical
picture of the magnetic field structure below this cutoff, consistent with
numerical experiments. We provide arguments for the reemergence of the
turbulent cascade well below the viscous cut-off scale and derive estimates for
field line diffusion on all scales. We note that this explains the persistence
of a single power law form for the turbulent power spectrum of the interstellar
medium, from scales of tens of parsecs down to thousands of kilometers. We find
that under typical conditions in the ISM stochastic reconnection speeds are
reduced by the presence of neutrals, but by no more than an order of magnitude.Comment: Astrophysical Journal in pres
Least-squares methods for identifying biochemical regulatory networks from noisy measurements
<b>Background</b>:
We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS) estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS). The Total Least Squares (TLS) technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks.
<b>Results</b>:
The superior performance of the CTLS method in identifying network interactions is demonstrated on three examples: a genetic network containing four genes, a network describing p53 activity and <i>mdm2</i> messenger RNA interactions, and a recently proposed kinetic model for interleukin (IL)-6 and (IL)-12b messenger RNA expression as a function of ATF3 and NF-κB promoter binding. For the first example, the CTLS significantly reduces the errors in the estimation of the Jacobian for the gene network. For the second, the CTLS reduces the errors from the measurements that are corrupted by white noise and the effect of neglected kinetics. For the third, it allows the correct identification, from noisy data, of the negative regulation of (IL)-6 and (IL)-12b by ATF3.
<b>Conclusion</b>:
The significant improvements in performance demonstrated by the CTLS method under the wide range of conditions tested here, including different levels and types of measurement noise and different numbers of data points, suggests that its application will enable more accurate and reliable identification and modelling of biochemical networks
A-site driven ferroelectricity in strained ferromagnetic L2NiMnO6 thin films
We report on theoretical and experimental investigation of A-site driven
ferroelectricity in ferromagnetic La2NiMnO6 thin films grown on SrTiO3
substrates. Structural analysis and density functional theory calculations show
that epitaxial strain stretches the rhombohedral La2NiMnO6 crystal lattice
along the [111]cubic direction, triggering a displacement of the A-site La ions
in the double perovskite lattice. The lattice distortion and the A-site
displacements stabilize a ferroelectric polar state in ferromagnetic La2NiMnO6
crystals. The ferroelectric state only appears in the rhombohedral La2NiMnO6
phase, where MnO6 and NiO6 octahedral tilting is inhibited by the 3-fold
crystal symmetry. Electron localization mapping showed that covalent bonding
with oxygen and 6s orbital lone pair formation are negligible in this material.Comment: in pres
Supersymmetric Gauge Theories with an Affine Quantum Moduli Space
All supersymmetric gauge theories based on simple groups which have an affine
quantum moduli space, i.e. one generated by gauge invariants with no relations,
W=0, and anomaly matching at the origin, are classified. It is shown that the
only theories with no gauge invariants (and moduli space equal to a single
point) are the two known examples, SU(5) with 5-bar + 10 and SO(10) with a
spinor. The index of the matter representation must be at least as big as the
index of the adjoint in theories which have a non-trivial relation among the
gauge invariants.Comment: Incorrect proof that theories with constraints must have mu >=
mu(adj) replaced by a correct one (6 pages, uses revtex, amssymb, array
Inflating magnetically charged braneworlds
Numerical solutions of Einstein, scalar, and gauge field equations are found
for static and inflating defects in a higher-dimensional spacetime. The defects
have -dimensional core and magnetic monopole configuration in
extra dimensions. For symmetry-breaking scale below the critical value
, the defects are characterized by a flat worldsheet geometry and
asymptotically flat extra dimensions. The critical scale is comparable
to the higher-dimensional Planck scale and has some dependence on the gauge and
scalar couplings. For , the extra dimensions degenerate into a
`cigar', and for all static solutions are singular. The
singularity can be removed if the requirement of staticity is relaxed and
defect cores are allowed to inflate. The inflating solutions have de Sitter
worldsheets and cigar geometry in the extra dimensions. Exact analytic
solutions describing the asymptotic behavior of these inflating monopoles are
found and the parameter space of these solutions is analyzed.Comment: 35 pages, revtex, 18 eps figure
Effective Lagrangian from Higher Curvature Terms: Absence of vDVZ Discontinuity in AdS Space
We argue that the van Dam-Veltman-Zakharov discontinuity arising in the limit of the massive graviton through an explicit Pauli-Fierz mass term
could be absent in anti de Sitter space. This is possible if the graviton can
acquire mass spontaneously from the higher curvature terms or/and the massless
limit is attained faster than the cosmological constant . We discuss the effects of higher-curvature couplings and of an explicit
cosmological term () on stability of such continuity and of massive
excitations.Comment: 23 pages, Latex, the version to appear in Class. Quant. Gra
Near-bandgap wavelength-dependent studies of long-lived traveling coherent longitudinal acoustic phonon oscillations in GaSb/GaAs systems
We report first studies of long-lived oscillations in optical pump-probe
measurements on GaSb-GaAs heterostructures. The oscillations arise from a
photogenerated coherent longitudinal acoustic phonon wave, which travels from
the top surface of GaSb across the interface into the GaAs substrate, providing
information on the optical properties of the material as a function of
time/depth. Wavelength-dependent studies of the oscillations near the bandgap
of GaAs indicate strong correlations to the optical properties of GaAs.Comment: 11 pages, 4 figure
BRST symmetry of SU(2) Yang-Mills theory in Cho--Faddeev--Niemi decomposition
We determine the nilpotent BRST and anti-BRST transformations for the
Cho--Faddeev-Niemi variables for the SU(2) Yang-Mills theory based on the new
interpretation given in the previous paper of the Cho--Faddeev-Niemi
decomposition. This gives a firm ground for performing the BRST quantization of
the Yang--Mills theory written in terms of the Cho--Faddeev-Niemi variables. We
propose also a modified version of the new Maximal Abelian gauge which could
play an important role in the reduction to the original Yang-Mills theory.Comment: 11 pages, no figure; Introduction improved, 3 references adde
- …
