146,235 research outputs found
Finding antipodal point grasps on irregularly shaped objects
Two-finger antipodal point grasping of arbitrarily shaped smooth 2-D and 3-D objects is considered. An object function is introduced that maps a finger contact space to the object surface. Conditions are developed to identify the feasible grasping region, F, in the finger contact space. A “grasping energy function”, E , is introduced which is proportional to the distance between two grasping points. The antipodal points correspond to critical points of E in F. Optimization and/or continuation techniques are used to find these critical points. In particular, global optimization techniques are applied to find the “maximal” or “minimal” grasp. Further, modeling techniques are introduced for representing 2-D and 3-D objects using B-spline curves and spherical product surfaces
Nuclear matter symmetry energy and the neutron skin thickness of heavy nuclei
Correlations between the thickness of the neutron skin in finite nuclei and
the nuclear matter symmetry energy are studied in the Skyrme Hartree-Fock
model. From the most recent analysis of the isospin diffusion data in heavy-ion
collisions based on an isospin- and momentum-dependent transport model with
in-medium nucleon-nucleon cross sections, a value of MeV for the
slope of the nuclear symmetry energy at saturation density is extracted, and
this imposes stringent constraints on both the parameters in the Skyrme
effective interactions and the neutron skin thickness of heavy nuclei.
Predicted thickness of the neutron skin is fm for Pb,
fm for Sn, and fm for Sn.Comment: 6 pages, 4 figures, 1 table, revised version, to appear in PR
Determining the strange and antistrange quark distributions of the nucleon
The difference between the strange and antistrange quark distributions,
\delta s(x)=s(x)-\sbar(x), and the combination of light quark sea and strange
quark sea, \Delta (x)=\dbar(x)+\ubar(x)-s(x)-\sbar(x), are originated from
non-perturbative processes, and can be calculated using non-perturbative models
of the nucleon. We report calculations of and using
the meson cloud model. Combining our calculations of with
relatively well known light antiquark distributions obtained from global
analysis of available experimental data, we estimate the total strange sea
distributions of the nucleon.Comment: 4 pages, 3 figures; talk given by F.-G. at QNP0
Further analysis of field effects on liquids and solidification
Numerical calculations of the magnitude of external field effects on liquids are presented to describe how external fields can influence the substructure of the field. Quantitative estimates of magnetic and gravitational effects are reported on melts of metals and semiconductors. The results are condensed in tables which contain the input data for calculation of the field effects on diffusion coefficient, solidification rate and for calculation of field forces on individual molecules in the melt
On Kernel Formulas and Dispersionless Hirota Equations
We rederive dispersionless Hirota equations of the dispersionless Toda
hierarchy from the method of kernel formula provided by Carroll and Kodama. We
then apply the method to derive dispersionless Hirota equations of the extended
dispersionless BKP(EdBKP) hierarchy proposed by Takasaki. Moreover, we verify
associativity equations (WDVV equations) in the EdBKP hierarchy from
dispersionless Hirota equations and give a realization of associative algebra
with structure constants expressed in terms of residue formula.Comment: 30 pages, minor corrections, references adde
Suppression of the superconducting energy gap in intrinsic Josephson junctions of single crystals
We have observed back-bending structures at high bias current in the
current-voltage curves of intrinsic Josephson junctions. These structures may
be caused by nonequilibrium quasiparticle injection and/or Joule heating. The
energy gap suppression varies considerably with temperature. Different levels
of the suppression are observed when the same level of current passes through
top electrodes of different sizes. Another effect which is seen and discussed,
is a super-current ``reentrance'' of a single intrinsic Josephson junction with
high bias current.Comment: accepted by Supercond. Sci. and Tech., 200
Transient energy excitation in shortcuts to adiabaticity for the time dependent harmonic oscillator
There is recently a surge of interest to cut down the time it takes to change
the state of a quantum system adiabatically. We study for the time-dependent
harmonic oscillator the transient energy excitation in speed-up processes
designed to reproduce the initial populations at some predetermined final
frequency and time, providing lower bounds and examples. Implications for the
limits imposed to the process times and for the principle of unattainability of
the absolute zero, in a single expansion or in quantum refrigerator cycles, are
drawn.Comment: 7 pages, 6 figure
On The Expected Photon Spectrum in B -> X_s + gamma and Its Uses
Measuring the photon energy spectrum in radiative B decays provides essential
help for gaining theoretical control over semileptonic B transitions. The
hadronic recoil mass distribution in B -> X_u \ell\nu promises the best
environment for determining |V_ub|. The theoretical uncertainties are largest
in the domain of low values of the lepton pair mass q^2. Universality relations
allow to describe this domain reliably in terms of the photon spectrum in B ->
X_s + \gamma. A method is proposed to incorporate 1/m_b corrections into this
relation. The low-E_\gamma tail in radiative decays is important in the context
of extracting |V_ub|. We argue that CLEO's recent fit to the spectrum
underestimates the fraction of the photon spectrum below 2 GeV. Potentially
significant uncertainties enter in the theoretical evaluation of the integrated
end-point lepton spectrum or the B -> X_u \ell\nu width with a too high value
of the lower cut on q^2 in alternative approaches to |V_ub|.Comment: 24 pages, 6 figures, LaTeX. Revised: Complete version. Numerical
predictions are improved and the estimate for the decay fraction revised. The
theoretical expectations for the decay fraction and the spectrum itself are
given on the plot
Energetics of Protein-DNA Interactions
Protein-DNA interactions are vital for many processes in living cells,
especially transcriptional regulation and DNA modification. To further our
understanding of these important processes on the microscopic level, it is
necessary that theoretical models describe the macromolecular interaction
energetics accurately. While several methods have been proposed, there has not
been a careful comparison of how well the different methods are able to predict
biologically important quantities such as the correct DNA binding sequence,
total binding free energy, and free energy changes caused by DNA mutation. In
addition to carrying out the comparison, we present two important theoretical
models developed initially in protein folding that have not yet been tried on
protein-DNA interactions. In the process, we find that the results of these
knowledge-based potentials show a strong dependence on the interaction distance
and the derivation method. Finally, we present a knowledge-based potential that
gives comparable or superior results to the best of the other methods,
including the molecular mechanics force field AMBER99
- …
