231 research outputs found
Spin-one color superconductivity in compact stars?- an analysis within NJL-type models
We present results of a microscopic calculation using NJL-type model of
possible spin-one pairings in two flavor quark matter for applications in
compact star phenomenology. We focus on the color-spin locking phase (CSL) in
which all quarks pair in a symmetric way, in which color and spin states are
locked. The CSL condensate is particularly interesting for compact star
applications since it is flavor symmetric and could easily satisfy charge
neutrality. Moreover, the fact that in this phase all quarks are gapped might
help to suppress the direct Urca process, consistent with cooling models. The
order of magnitude of these small gaps (~1 MeV) will not influence the EoS, but
their also small critical temperatures (T_c ~800 keV) could be relevant in the
late stages neutron star evolution, when the temperature falls below this value
and a CSL quark core could form.Comment: 7 pages, 7 figures, revised version, accepted for the Conference
Proceedings of "Isolated Neutron Stars: from the Interior to the Surface",
London, 24-28. April 200
Two lectures on color superconductivity
The first lecture provides an introduction to the physics of color
superconductivity in cold dense quark matter. The main color superconducting
phases are briefly described and their properties are listed. The second
lecture covers recent developments in studies of color superconducting phases
in neutral and beta-equilibrated matter. The properties of gapless color
superconducting phases are discussed.Comment: 56 pages, 9 figures. Minor corrections and references added. Lectures
delivered at the IARD 2004 conference, Saas Fee, Switzerland, June 12 - 19,
2004, and at the Helmholtz International Summer School and Workshop on Hot
points in Astrophysics and Cosmology, JINR, Dubna, Russia, August 2 - 13,
200
Neutrino Emission from Goldstone Modes in Dense Quark Matter
We calculate neutrino emissivities from the decay and scattering of Goldstone
bosons in the color-flavor-locked (CFL) phase of quarks at high baryon density.
Interactions in the CFL phase are described by an effective low-energy theory.
For temperatures in the tens of keV range, relevant to the long-term cooling of
neutron stars, the emissivities involving Goldstone bosons dominate over those
involving quarks, because gaps in the CFL phase are MeV while the
masses of Goldstone modes are on the order of 10 MeV. For the same reason, the
specific heat of the CFL phase is also dominated by the Goldstone modes.
Notwithstanding this, both the emissivity and the specific heat from the
massive modes remain rather small, because of their extremely small number
densities. The values of the emissivity and the specific heat imply that the
timescale for the cooling of the CFL core in isolation is y,
which makes the CFL phase invisible as the exterior layers of normal matter
surrounding the core will continue to cool through significantly more rapid
processes. If the CFL phase appears during the evolution of a proto-neutron
star, neutrino interactions with Goldstone bosons are expected to be
significantly more important since temperatures are high enough (
MeV) to admit large number densities of Goldstone modes.Comment: 29 pages, no figures. slightly modified text, one new eqn. and new
refs. adde
In Situ Spectral Magnetoellipsometry for Structural, Magnetic and Optical Properties of Me/Si (Me Mn, Fe) Nanolayers
In our work we present in-situ spectral magnetoellipsometer is equipped with sapphire manipulator. which allows us to carry out in-situ and in-time optical and magnetooptical measurements in the range from 10 K to 1500 K in spectral range 1.5 eV-4.0 eV (830 nm-300 nm), the range of magnetic fields is +/-0.4 T.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3555
Baikal-GVD
We present the status of the Gigaton Volume Detector in Lake Baikal (Baikal-GVD) designed for the detection of high energy neutrinos of astrophysical origin. The telescope consists of functionally independent clusters, sub-arrays of optical modules (OMs), which are connected to shore by individual electro-optical cables. During 2015 the GVD demonstration cluster, comprising 192 OMs, has been successfully operated in Lake Baikal. In 2016 this array was upgraded to baseline configuration of GVD cluster with 288 OMs arranged on eight vertical strings. Thus the instrumented water volume has been increased up to about 5.9 Mtons. The array was commissioned in early April 2016 and takes data since then. We describe the configuration and design of the 2016 array. Preliminary results obtained with data recorded in 2015 are also discussed
- …
