41 research outputs found
Supersymmetric Deformations of Type IIB Matrix Model as Matrix Regularization of N=4 SYM
We construct a supersymmetry and global symmetry
preserving deformation of the type IIB matrix model. This model, without
orbifold projection, serves as a nonperturbative regularization for
supersymmetric Yang-Mills theory in four Euclidean dimensions.
Upon deformation, the eigenvalues of the bosonic matrices are forced to reside
on the surface of a hypertorus. We explicitly show the relation between the
noncommutative moduli space of the deformed matrix theory and the Brillouin
zone of the emergent lattice theory. This observation makes the transmutation
of the moduli space into the base space of target field theory clearer. The
lattice theory is slightly nonlocal, however the nonlocality is suppressed by
the lattice spacing. In the classical continuum limit, we recover the
SYM theory. We also discuss the result in terms of D-branes and
interpret it as collective excitations of D(-1) branes forming D3 branes.Comment: Version 2: Extended discussion of moduli space, added a referenc
Partial monosomy of chromosome 10 short arms.
Two children with monosomy 10p13 are reported. In the first case the monosomy was the result of a maternal balanced translocation t(3;10) (p27;p13) while the second case was a de novo mutation. We reviewed clinical details of cases reported so far and found that certain symptoms are typical of the deletion of a comparatively large segment of chromosome 10 short arms. These symptoms include mental and growth retardation, skull abnormalities, antimongoloid slant of the eyes, ear abnormalities, anteverted nostrils, abnormalities of the hands and feet, cryptorchidism in boys, and, primarily, hypoplasia or aplasia of the olfactory bulbs and olfactory tracts as well as narrow palpebral fissures or eyelid ptosis
Perspectives in Global Helioseismology, and the Road Ahead
We review the impact of global helioseismology on key questions concerning
the internal structure and dynamics of the Sun, and consider the exciting
challenges the field faces as it enters a fourth decade of science
exploitation. We do so with an eye on the past, looking at the perspectives
global helioseismology offered in its earlier phases, in particular the
mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer
datasets coupled with new developments in analysis, have altered, refined, and
changed some of those perspectives, and opened others that were not previously
available for study. We finish by discussing outstanding challenges and
questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures
Advances in Global and Local Helioseismology: an Introductory Review
Helioseismology studies the structure and dynamics of the Sun's interior by
observing oscillations on the surface. These studies provide information about
the physical processes that control the evolution and magnetic activity of the
Sun. In recent years, helioseismology has made substantial progress towards the
understanding of the physics of solar oscillations and the physical processes
inside the Sun, thanks to observational, theoretical and modeling efforts. In
addition to the global seismology of the Sun based on measurements of global
oscillation modes, a new field of local helioseismology, which studies
oscillation travel times and local frequency shifts, has been developed. It is
capable of providing 3D images of the subsurface structures and flows. The
basic principles, recent advances and perspectives of global and local
helioseismology are reviewed in this article.Comment: 86 pages, 46 figures; "Pulsation of the Sun and Stars", Lecture Notes
in Physics, Vol. 832, Rozelot, Jean-Pierre; Neiner, Coralie (Eds.), 201
