4 research outputs found
Deciphering ligand specificity of a Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for Gluco- and Galacto- Substituted mannans and Its calcium induced stability
Articles in International JournalsThis study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35) in polysaccharide recognition. CtCBM35 was cloned into pET28a (+) vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3) cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC). Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displaying significant association with konjac glucomannan (Ka = 14.3×104 M−1), carob galactomannan (Ka = 12.4×104 M−1) and negligible association (Ka = 12 µM−1) with insoluble mannan. Binding of CtCBM35 with polysaccharides which was calcium dependent exhibited two fold higher association in presence of 10 mM Ca2+ ion with konjac glucomannan (Ka = 41×104 M−1) and carob galactomannan (Ka = 30×104 M−1). The polysaccharide binding was further investigated by fluorescence spectrophotometric studies. On binding with carob galactomannan and konjac glucomannan the conformation of CtCBM35 changed significantly with regular 21 nm peak shifts towards lower quantum yield. The degree of association (Ka) with konjac glucomannan and carob galactomannan, 14.3×104 M−1 and 11.4×104 M−1, respectively, corroborated the findings from affinity electrophoresis. The association of CtCBM35with konjac glucomannan led to higher free energy of binding (ΔG) −25 kJ mole−1 as compared to carob galactomannan (ΔG) −22 kJ mole−1. On binding CtCBM35 with konjac glucomannan and carob galactomannan the hydrodynamic radius (RH) as analysed by dynamic light scattering (DLS) study, increased to 8 nm and 6 nm, respectively, from 4.25 nm in absence of ligand. The presence of 10 mM Ca2+ ions imparted stiffer orientation of CtCBM35 particles with increased RH of 4.52 nm. Due to such stiffer orientation CtCBM35 became more thermostable and its melting temperature was shifted to 70°C from initial 50°C
A novel a-L-Arabinofuranosidase of Family 43 Glycoside Hydrolase (Ct43Araf ) from Clostridium thermocellum
Articles in International JournalsThe study describes a comparative analysis of biochemical, structural and functional properties of two recombinant
derivatives from Clostridium thermocellum ATCC 27405 belonging to family 43 glycoside hydrolase. The family 43 glycoside
hydrolase encoding a-L-arabinofuranosidase (Ct43Araf) displayed an N-terminal catalytic module CtGH43 (903 bp) followed
by two carbohydrate binding modules CtCBM6A (405 bp) and CtCBM6B (402 bp) towards the C-terminal. Ct43Araf and its
truncated derivative CtGH43 were cloned in pET-vectors, expressed in Escherichia coli and functionally characterized. The
recombinant proteins displayed molecular sizes of 63 kDa (Ct43Araf) and 34 kDa (CtGH43) on SDS-PAGE analysis. Ct43Araf
and CtGH43 showed optimal enzyme activities at pH 5.7 and 5.4 and the optimal temperature for both was 50uC. Ct43Araf
and CtGH43 showed maximum activity with rye arabinoxylan 4.7 Umg21 and 5.0 Umg21, respectively, which increased by
more than 2-fold in presence of Ca2+ and Mg2+ salts. This indicated that the presence of CBMs (CtCBM6A and CtCBM6B) did
not have any effect on the enzyme activity. The thin layer chromatography and high pressure anion exchange
chromatography analysis of Ct43Araf hydrolysed arabinoxylans (rye and wheat) and oat spelt xylan confirmed the release of
L-arabinose. This is the first report of a-L-arabinofuranosidase from C. thermocellum having the capacity to degrade both pnitrophenol-
a-L-arabinofuranoside and p-nitrophenol-a-L-arabinopyranoside. The protein melting curves of Ct43Araf and
CtGH43 demonstrated that CtGH43 and CBMs melt independently. The presence of Ca2+ ions imparted thermal stability to
both the enzymes. The circular dichroism analysis of CtGH43 showed 48% b-sheets, 49% random coils but only 3% a-helices
Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery
Quantitative proteomics: assessing the spectrum of in-gel protein detection methods
Proteomics research relies heavily on visualization methods for detection of proteins separated by polyacrylamide gel electrophoresis. Commonly used staining approaches involve colorimetric dyes such as Coomassie Brilliant Blue, fluorescent dyes including Sypro Ruby, newly developed reactive fluorophores, as well as a plethora of others. The most desired characteristic in selecting one stain over another is sensitivity, but this is far from the only important parameter. This review evaluates protein detection methods in terms of their quantitative attributes, including limit of detection (i.e., sensitivity), linear dynamic range, inter-protein variability, capacity for spot detection after 2D gel electrophoresis, and compatibility with subsequent mass spectrometric analyses. Unfortunately, many of these quantitative criteria are not routinely or consistently addressed by most of the studies published to date. We would urge more rigorous routine characterization of stains and detection methodologies as a critical approach to systematically improving these critically important tools for quantitative proteomics. In addition, substantial improvements in detection technology, particularly over the last decade or so, emphasize the need to consider renewed characterization of existing stains; the quantitative stains we need, or at least the chemistries required for their future development, may well already exist
