7,242 research outputs found
Risk factors for wound infection in surgery for spinal metastasis
Wound infection rates are generally higher in patients undergoing surgery for spinal metastasis. Risk factors of wound infection in these patients are poorly understood.
Purpose
To identify demographic and clinical variables that may be associated with patients experiencing a higher wound infection rate.
Study design
Retrospective study with prospectively collected data of spinal metastasis patients operated consecutively at a University Teaching Hospital, adult spine division which is a tertiary referral centre for complex spinal surgery.
Patient sample
Ninety-eight patients were all surgically treated, consecutively from January 2009 to September 2011. Three patients had to be excluded due to inadequate data.
Outcome measures
Physiological measures, with presence or absence of microbiologically proven infection.
Methods
Various demographic and clinical data were recorded, including age, serum albumin level, blood total lymphocyte count, corticosteroid intake, Malnutrition Universal Screening Tool (MUST) score, neurological disability, skin closure material used, levels of surgery and administration of peri-operative corticosteroids. No funding was received from any sources for this study and as far as we are aware, there are no potential conflict of interest-associated biases in this study.
Results
Higher probabilities of infection were associated with low albumin level, seven or more levels of surgery, use of delayed/non-absorbable skin closure material and presence of neurological disability. Of these factors, levels of surgery were found to be statistically significant at the 5 % significance level.
Conclusion
Risk of infection is high (17.9 %) in patients undergoing surgery for spinal metastasis. Seven or more vertebral levels of surgery increase the risk of infection significantly (p < 0.05). Low albumin level and presence of neurological disability appear to show a trend towards increased risk of infection. Use of absorbable skin closure material, age, low lymphocyte count, peri-operative administration of corticosteroids and MUST score do not appear to influence the risk of infection
Shape memory characteristics of woven glass fibre fabric reinforced epoxy composite in flexure
Shape memory characteristics of a woven glass fibre (GF) fabric reinforced epoxy composite (reinforcement content: 38 vol.%) were assessed in three point bending mode in a dynamic-mechanical analysis device and compared to those of the parent epoxy resin (EP). From unconstrained tests the shape fixity and recovery ratios and the recovery rate, whereas from constrained tests the recovery stress were determined. The shape fixity and recovery rate decreased due to the GF reinforcement which had, however, no effect on the shape recovery. Major benefit of the woven GF fabric was
that the recovery stress could be enhanced by two orders of magnitude in comparison to the neat EP. GF reinforcement was accompanied with a substantial decrease in the failure-free flexural deformability of the composite specimen
Effects of fibre content and textile structure on dynamic-mechanical and shape-memory properties of ELO/flax biocomposites
Biocomposites were prepared using epoxidized linseed oil (ELO) and flax fibre
reinforcements in different assemblies. ELO was cured by two different anhydrides to
check how its thermomechanical properties can be influenced. As reinforcements
nonwoven mat, twill weave and quasi-unidirectional textile fabrics with two different
yarn finenesses were used. Their reinforcing effect was determined in dynamic
mechanical analysis (DMA) in flexure. DMA served also to determine the glass
transition temperature (Tg). Shape memory properties were derived from quasiunconstrained
flexural tests performed near to the Tg of the ELO and its biocomposites.
Flax reinforcement reduced the Tg that was attributed to off-stoichiometry owing to
chemical reaction between the hydroxyl groups of flax and anhydride hardener. The
shape memory parameters were moderate or low. They were affected by both textile
content and type
Ferroelectricity induced by interatomic magnetic exchange interaction
Multiferroics, where two or more ferroic order parameters coexist, is one of
the hottest fields in condensed matter physics and materials science[1-9].
However, the coexistence of magnetism and conventional ferroelectricity is
physically unfavoured[10]. Recently several remedies have been proposed, e.g.,
improper ferroelectricity induced by specific magnetic[6] or charge orders[2].
Guiding by these theories, currently most research is focused on frustrated
magnets, which usually have complicated magnetic structure and low magnetic
ordering temperature, consequently far from the practical application. Simple
collinear magnets, which can have high magnetic transition temperature, have
never been considered seriously as the candidates for multiferroics. Here, we
argue that actually simple interatomic magnetic exchange interaction already
contains a driving force for ferroelectricity, thus providing a new microscopic
mechanism for the coexistence and strong coupling between ferroelectricity and
magnetism. We demonstrate this mechanism by showing that even the simplest
antiferromagnetic (AFM) insulator MnO, can display a magnetically induced
ferroelectricity under a biaxial strain
Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population
BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin
Mesoscopic organization reveals the constraints governing C. elegans nervous system
One of the biggest challenges in biology is to understand how activity at the
cellular level of neurons, as a result of their mutual interactions, leads to
the observed behavior of an organism responding to a variety of environmental
stimuli. Investigating the intermediate or mesoscopic level of organization in
the nervous system is a vital step towards understanding how the integration of
micro-level dynamics results in macro-level functioning. In this paper, we have
considered the somatic nervous system of the nematode Caenorhabditis elegans,
for which the entire neuronal connectivity diagram is known. We focus on the
organization of the system into modules, i.e., neuronal groups having
relatively higher connection density compared to that of the overall network.
We show that this mesoscopic feature cannot be explained exclusively in terms
of considerations, such as optimizing for resource constraints (viz., total
wiring cost) and communication efficiency (i.e., network path length).
Comparison with other complex networks designed for efficient transport (of
signals or resources) implies that neuronal networks form a distinct class.
This suggests that the principal function of the network, viz., processing of
sensory information resulting in appropriate motor response, may be playing a
vital role in determining the connection topology. Using modular spectral
analysis, we make explicit the intimate relation between function and structure
in the nervous system. This is further brought out by identifying functionally
critical neurons purely on the basis of patterns of intra- and inter-modular
connections. Our study reveals how the design of the nervous system reflects
several constraints, including its key functional role as a processor of
information.Comment: Published version, Minor modifications, 16 pages, 9 figure
De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development
Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD
Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions
We report on a search for metastable positively and negatively charged states
of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864.
We have sampled approximately six billion 10% most central Au+Pb interactions
and have observed no strangelet states (baryon number A < 100 droplets of
strange quark matter). We thus set upper limits on the production of these
exotic states at the level of 1-6 x 10^{-8} per central collision. These limits
are the best and most model independent for this colliding system. We discuss
the implications of our results on strangelet production mechanisms, and also
on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover
memorial edition
Deriving a mutation index of carcinogenicity using protein structure and protein interfaces
With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
