79 research outputs found
Quantum dynamics in strong fluctuating fields
A large number of multifaceted quantum transport processes in molecular
systems and physical nanosystems can be treated in terms of quantum relaxation
processes which couple to one or several fluctuating environments. A thermal
equilibrium environment can conveniently be modelled by a thermal bath of
harmonic oscillators. An archetype situation provides a two-state dissipative
quantum dynamics, commonly known under the label of a spin-boson dynamics. An
interesting and nontrivial physical situation emerges, however, when the
quantum dynamics evolves far away from thermal equilibrium. This occurs, for
example, when a charge transferring medium possesses nonequilibrium degrees of
freedom, or when a strong time-dependent control field is applied externally.
Accordingly, certain parameters of underlying quantum subsystem acquire
stochastic character. Herein, we review the general theoretical framework which
is based on the method of projector operators, yielding the quantum master
equations for systems that are exposed to strong external fields. This allows
one to investigate on a common basis the influence of nonequilibrium
fluctuations and periodic electrical fields on quantum transport processes.
Most importantly, such strong fluctuating fields induce a whole variety of
nonlinear and nonequilibrium phenomena. A characteristic feature of such
dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
An effective all-atom potential for proteins
We describe and test an implicit solvent all-atom potential for simulations
of protein folding and aggregation. The potential is developed through studies
of structural and thermodynamic properties of 17 peptides with diverse
secondary structure. Results obtained using the final form of the potential are
presented for all these peptides. The same model, with unchanged parameters, is
furthermore applied to a heterodimeric coiled-coil system, a mixed alpha/beta
protein and a three-helix-bundle protein, with very good results. The
computational efficiency of the potential makes it possible to investigate the
free-energy landscape of these 49--67-residue systems with high statistical
accuracy, using only modest computational resources by today's standards
De-Novo Discovery of Differentially Abundant Transcription Factor Binding Sites Including Their Positional Preference
Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open-source Java framework Jstacs and as a stand-alone application at http://www.jstacs.de/index.php/Dispom
Effect of growth rate on transcriptomic responses to immune stimulation in wild-type, domesticated, and GH-transgenic coho salmon
BACKGROUND: Transcriptomic responses to immune stimulation were investigated in coho salmon (Oncorhynchus kisutch) with distinct growth phenotypes. Wild-type fish were contrasted to strains with accelerated growth arising either from selective breeding (i.e. domestication) or genetic modification. Such distinct routes to accelerated growth may have unique implications for relationships and/or trade-offs between growth and immune function.RESULTS: RNA-Seq was performed on liver and head kidney in four 'growth response groups' injected with polyinosinic-polycytidylic acid (Poly I:C; viral mimic), peptidoglycan (PGN; bacterial mimic) or PBS (control). These groups were: 1) 'W': wild-type, 2) 'TF': growth hormone (GH) transgenic salmon with ~ 3-fold higher growth-rate than W, 3) 'TR': GH transgenic fish ration restricted to possess a growth-rate equal to W, and 4) 'D': domesticated non-transgenic fish showing growth-rate intermediate to W and TF. D and TF showed a higher similarity in transcriptomic response compared to W and TR. Several immune genes showed constitutive expression differences among growth response groups, including perforin 1 and C-C motif chemokine 19-like. Among the affected immune pathways, most were up-regulated by Poly I:C and PGN. In response to PGN, the c-type lectin receptor signalling pathway responded uniquely in TF and TR. In response to stimulation with both immune mimics, TR responded more strongly than other groups. Further, group-specific pathway responses to PGN stimulation included NOD-like receptor signalling in W and platelet activation in TR. TF consistently showed the most attenuated immune response relative to W, and more DEGs were apparent in TR than TF and D relative to W, suggesting that a non-satiating ration coupled with elevated circulating GH levels may cause TR to possess enhanced immune capabilities. Alternatively, TF and D salmon are prevented from acquiring the same level of immune response as TR due to direction of energy to high overall somatic growth. Further study of the effects of ration restriction in growth-modified fishes is warranted.CONCLUSIONS: These findings improve our understanding of the pleiotropic effects of growth modification on the immunological responses of fish, revealing unique immune pathway responses depending on the mechanism of growth acceleration and nutritional availability.</p
An in vivo animal study assessing long-term changes in hypothalamic cytokines following perinatal exposure to a chemical mixture based on Arctic maternal body burden
Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications
In the past decade, positron emission tomography (PET) with carbon-11-labeled Pittsburgh Compound B (PIB) has revolutionized the neuroimaging of aging and dementia by enabling in vivo detection of amyloid plaques, a core pathologic feature of Alzheimer's disease (AD). Studies suggest that PIB-PET is sensitive for AD pathology, can distinguish AD from non-AD dementia (for example, frontotemporal lobar degeneration), and can help determine whether mild cognitive impairment is due to AD. Although the short half-life of the carbon-11 radiolabel has thus far limited the use of PIB to research, a second generation of tracers labeled with fluorine-18 has made it possible for amyloid PET to enter the clinical era. In the present review, we summarize the literature on amyloid imaging in a range of neurodegenerative conditions. We focus on potential clinical applications of amyloid PET and its role in the differential diagnosis of dementia. We suggest that amyloid imaging will be particularly useful in the evaluation of mildly affected, clinically atypical or early age-at-onset patients, and illustrate this with case vignettes from our practice. We emphasize that amyloid imaging should supplement (not replace) a detailed clinical evaluation. We caution against screening asymptomatic individuals, and discuss the limited positive predictive value in older populations. Finally, we review limitations and unresolved questions related to this exciting new technique
Should patients with hip joint prosthesis receive antibiotic prophylaxis before dental treatment?
The safety committee of the American Academy of Orthopedic Surgeons (AAOS) recommended in 2009 that clinicians should consider antibiotic prophylaxis for all patients with total joint replacement before any invasive procedure that may cause bacteremia. This has aroused confusion and anger among dentists asking for the evidence. The present review deals with different aspects of the rationale for this recommendation giving attention to views both in favor of and against it
Identification and antifungal susceptibility of Candida species isolated from the urine of patients in a university hospital in Brazil
ABSTRACT The aim of this study was to identify Candida spp. isolated from candiduria episodes at a tertiary hospital in the Midwest region of Brazil, and to determine their susceptibility profiles to antifungal compounds. From May 2011 to April 2012, Candida spp. isolated from 106 adult patients with candiduria admitted to the University Hospital of the Federal University of Mato Grosso do Sul were evaluated. Both, species identification and susceptibility testing with fluconazole-FLC, voriconazole-VRC, and amphotericin B-AmB were carried out using the Vitek 2. To discriminate species of the C. parapsilosis complex, a RAPD-PCR technique using the RPO2 primer was performed. From the total of 106 isolates, 42 (39.6%) C. albicans and 64 (60.4%) Candida non-albicans (CNA) - 33 C. tropicalis, 18 C. glabrata, 5 C. krusei, 4 C. parapsilosis sensu stricto, 2 C. kefyr, 1 C. lusitaniae, and 1 C. guilliermondii were identified. All isolates were susceptible to AmB and VRC, whereas all C. glabrata isolates presented either resistance (5.6%) or dose-dependent susceptibility (94.4%) to FLC. The study of Candida spp. and their resistance profiles may help in tailoring more efficient therapeutic strategies for candiduria
Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia
- …
