22 research outputs found

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Use of cultivated plants and non-plant remedies for human and animal home-medication in Liuban district, Belarus

    Get PDF
    Background: To use any domestic remedy, specific knowledge and skills are required. Simple logic dictates that the use of wild plants in the context of limited interaction with nature requires prior identification, while in the case of non-plant remedies and cultivated plants this step can be omitted. This paper aims to document the current and past uses of non-plant remedies and cultivated plants in the study region for human/animal medication; to analyze the human medicinal and veterinary use areas in the context of the remedy groups; to qualitatively compare the results with relevant historical publications; and to compare the intensity and purpose of use between the remedy groups. Methods: During field studies 134 semi-structured interviews were conducted with locals from 11 villages in the LiubaÅ\u84 district of Belarus. Currently used home-remedies as well as those used in the past were documented by employing the folk history method. The subject was approached through health-related uses, not by way of remedies. Interview records were digitalized and structured in Detailed Use Records in order to ascertain local perceptions. An Informant Consensus Factor (FIC) was calculated for remedy groups as well as for different use categories. Results: In the human medication area the use of nearby remedies was neither very diverse nor numerous: 266 DUR for 45 taxa belonging to 27 families were recorded for cultivated plants along with 188 DUR for 58 different non-plant remedies. The FIC values for both remedy groups were lower than for wild plants. In the ethnoveterinary medicine use area there were 48 DUR referring to the use of 14 cultivated plant taxa from 12 families and 72 DUR referring to the use of 31 non-plant remedies. The FIC value for the whole veterinary use area of cultivated plants was relatively low, yet similar to the FIC of wild plants. Conclusions: Differences between remedy groups were pronounced, indicating that in domestic human medicine cultivated plants and non-plant remedies are either remarkably less important than wild ones or not considered worth talking about. In ethnoveterinary medicine non-plant remedies are almost equally important as wild plants, while cultivated plants are the least used. People in study area seem to still more often rely on, or are more willing to talk to strangers about, wild plants, as promoted by both official medicine and popular literature

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Microarray analysis of LTR retrotransposon silencing identifies Hdac1 as a regulator of retrotransposon expression in mouse embryonic stem cells

    Get PDF
    Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells

    Restricting retrotransposons: a review

    Get PDF

    Endothelial activation and cell adhesion molecule concentrations in pregnant women living at high altitude

    No full text
    Objectives:Maternal physiology at high altitude could be considered to resemble an intermediate state between preeclampsia and normal pregnancy. The objective of the current study was to determine if cell adhesion molecules, known to be increased in preeclampsia, are increased with chronic maternal and placental hypoxia (due to high-altitude residence) in the absence of preeclampsia. Methods:Serum was collected from women residing at 3100 m or 1600 m in the three trimesters of pregnancy and postpartum. Vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and intercellular adhesion molecule-1 (ICAM-1) were measured by enzyme-linked immunosorbent assay (ELISA). Results:General linear model (GLM) repeated measures analysis of VCAM-1, E-selectin, and ICAM-1 data showed there were no statistically signiciant effects of gestation within either the high- or moderate-altitude groups or between the different altitude. Conclusion:The increase in cell adhesion molecules reported in preeclampsia is not present in pregnant women at high altitude, suggesting that maternal systemic hypoxia is not responsible for this pathway of endothelial cell activation in preeclampsia

    High-end arteriolar resistance limits uterine artery blood flow and restricts fetal growth in preeclampsia and gestational hypertension at high altitude

    No full text
    The reduction in infant birth weight and increased frequency of preeclampsia (PE) in high-altitude residents have been attributed to greater placental hypoxia, smaller uterine artery (UA) diameter, and lower UA blood flow (QUA). This cross-sectional case-control study determined UA, common iliac (CI), and external iliac (EI) arterial blood flow in Andeans residing at 3,600–4,100 m, who were either nonpregnant (NP, n = 23), or experiencing normotensive pregnancies (NORM; n = 155), preeclampsia (PE, n = 20), or gestational hypertension (GH, n = 12). Pregnancy enlarged UA diameter to ∼0.62 cm in all groups, but indices of end-arteriolar vascular resistance were higher in PE or GH than in NORM. QUA was lower in early-onset (≤34 wk) PE or GH than in NORM, but was normal in late-onset (>34 wk) illness. Left QUA was consistently greater than right in NORM, but the pattern reversed in PE. Although QCI and QEI were higher in PE and GH than NORM, the fraction of QCI distributed to the UA was reduced 2- to 3-fold. Women with early-onset PE delivered preterm, and 43% had stillborn small for gestational age (SGA) babies. Those with GH and late-onset PE delivered at term but had higher frequencies of SGA babies (GH=50%, PE=46% vs. NORM=15%, both P < 0.01). Birth weight was strongly associated with reduced QUA (R2 = 0.80, P < 0.01), as were disease severity and adverse fetal outcomes. We concluded that high end-arteriolar resistance, not smaller UA diameter, limited QUA and restricted fetal growth in PE and GH. These are, to our knowledge, the first quantitative measurements of QUA and pelvic blood flow in early- vs. late-onset PE in high-altitude residents

    Retrotransposon-centered analysis of piRNA targeting shows a shift from active to passive retrotransposon transcription in developing mouse testes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Piwi-associated RNAs (piRNAs) bind transcripts from retrotransposable elements (RTE) in mouse germline cells and seemingly act as guides for genomic methylation, thereby repressing the activity of RTEs. It is currently unknown if and how Piwi proteins distinguish RTE transcripts from other cellular RNAs. During germline development, the main target of piRNAs switch between different types of RTEs. Using the piRNA targeting of RTEs as an indicator of RTE activity, and considering the entire population of genomic RTE loci along with their age and location, this study aims at further elucidating the dynamics of RTE activity during mouse germline development.</p> <p>Results</p> <p>Due to the inherent sequence redundancy between RTE loci, assigning piRNA targeting to specific loci is problematic. This limits the analysis, although certain features of piRNA targeting of RTE loci are apparent. As expected, young RTEs display a much higher level of piRNA targeting than old RTEs. Further, irrespective of age, RTE loci near protein-coding coding genes are targeted to a greater extent than RTE loci far from genes. During development, a shift in piRNA targeting is observed, with a clear increase in the relative piRNA targeting of RTEs residing within boundaries of protein-coding gene transcripts.</p> <p>Conclusions</p> <p>Reanalyzing published piRNA sequences and taking into account the features of individual RTE loci provide novel insight into the activity of RTEs during development. The obtained results are consistent with some degree of proportionality between what transcripts become substrates for Piwi protein complexes and the level by which the transcripts are present in the cell. A transition from active transcription of RTEs to passive co-transcription of RTE sequences residing within protein-coding transcripts appears to take place in postnatal development. Hence, the previously reported increase in piRNA targeting of SINEs in postnatal testis development does not necessitate widespread active transcription of SINEs, but may simply be explained by the prevalence of SINEs residing in introns.</p
    corecore