12 research outputs found

    On the curvature of vortex moduli spaces

    Get PDF
    We use algebraic topology to investigate local curvature properties of the moduli spaces of gauged vortices on a closed Riemann surface. After computing the homotopy type of the universal cover of the moduli spaces (which are symmetric powers of the surface), we prove that, for genus g>1, the holomorphic bisectional curvature of the vortex metrics cannot always be nonnegative in the multivortex case, and this property extends to all Kaehler metrics on certain symmetric powers. Our result rules out an established and natural conjecture on the geometry of the moduli spaces.Comment: 25 pages; final version, to appear in Math.

    On critical behaviour in systems of Hamiltonian partial differential equations

    Get PDF
    We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlev\ue9-I (PI) equation or its fourth-order analogue P2I. As concrete examples, we discuss nonlinear Schr\uf6dinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture

    Einstein metrics on tangent bundles of spheres

    No full text
    We give an elementary treatment of the existence of complete Kähler-Einstein metrics with nonpositive Einstein constant and underlying manifold diffeomorphic to the tangent bundle of the (n + 1)-sphere
    corecore