228 research outputs found

    ICANOE - Imaging and Calorimetric Neutrino Oscillation Experiment

    Get PDF
    The main scientific goal of the ICANOE detector is the one of elucidating in a comprehensive way the pattern of neutrino masses and mixings, following the SuperKamiokande results and the observed solar neutrinos deficit. To achieve these goals, the experimental method is based upon the complementary and simultaneous detection of CERN beam (CNGS) and cosmic ray (CR) events. For the currently allowed values of the SuperKamiokande results, both CNGS and cosmic ray data will give independent measurements and provide a precise determination of the oscillation parameters.Comment: Talk given at the Workshop on the Next generation Nucleon decay and Neutrino detector (NNN99), September 23-25, 199

    A low energy optimization of the CERN-NGS neutrino beam for a theta_{13} driven neutrino oscillation search

    Full text link
    The possibility to improve the CERN to Gran Sasso neutrino beam performances for theta_{13} searches is investigated. We show that by an appropriate optimization of the target and focusing optics of the present CNGS design, we can increase the flux of low energy neutrinos by about a factor 5 compared to the current tau optimized focalisation. With the ICARUS 2.35 kton detector at LNGS and in case of negative result, this would allow to improve the limit to sin^22 theta_{13} by an order of magnitude better than the current limit of CHOOZ at Delta m^2 approximately 3 times 10^{-3} eV^2 within 5 years of nominal CNGS running. This is by far the most sensitive setup of the currently approved long-baseline experiments and is competitive with the proposed JHF superbeam.Comment: 19 pages, 8 figure

    First operation of a liquid Argon TPC embedded in a magnetic field

    Full text link
    We have operated for the first time a liquid Argon TPC immersed in a magnetic field up to 0.55 T. We show that the imaging properties of the detector are not affected by the presence of the magnetic field. The magnetic bending of the ionizing particle allows to discriminate their charge and estimate their momentum. These figures were up to now not accessible in the non-magnetized liquid Argon TPC.Comment: 9 pages, 3 figure

    A hardware implementation of Region-of-Interest selection in LAr-TPC for data reduction and triggering

    Full text link
    Large Liquid Argon TPC detectors in the range of multikton mass for neutrino and astroparticle physics require the extraction and treatment of signals from some 105 wires. In order to enlarge the throughtput of the DAQ system an on-line lossless data compression has been realized reducing almost a factor 4 the data flow. Moreover a trigger system based on a new efficient on-line identification algorithm of wire hits was studied, implemented on the actual ICARUS digital read- out boards and fully tested on the ICARINO LAr-TPC facility operated at LNL INFN Laboratory with cosmic-rays. Capability to trigger isolated low energy events down to 1 MeV visible energy was also demonstrated.Comment: 26 pages, 26 Figure; to be submitted to JINS

    Current Status of Neutrino Masses and Mixings

    Get PDF
    The evidences in favor of solar and atmospheric neutrino oscillations are briefly reviewed and shown to be gracefully accommodated in the framework of three-neutrino mixing with bilarge mixing.Comment: 5 pages. Talk presented at the 31st International Conference on High Energy Physics "ICHEP02", 24-31 July 2002, Amsterda

    Future Precision Neutrino Oscillation Experiments and Theoretical Implications

    Full text link
    Future neutrino oscillation experiments will lead to precision measurements of neutrino mass splittings and mixings. The flavour structure of the lepton sector will therefore at some point become better known than that of the quark sector. This article discusses the potential of future oscillation experiments on the basis of detailed simulations with an emphasis on experiments which can be done in about ten years. In addition, some theoretical implications for neutrino mass models will be briefly discussed.Comment: Talk given at Nobel Symposium 2004: Neutrino Physics, Haga Slott, Enkoping, Sweden, 19-24 Aug 200

    Reconstructing the two right-handed neutrino model

    Full text link
    In this paper we propose a low-energy parametrization of the two right-handed neutrino model, and discuss the prospects to determine experimentally these parameters in supersymmetric scenarios. In addition, we present exact formulas to reconstruct the high-energy leptonic superpotential in terms of the low-energy observables. We also discuss limits of the three right-handed neutrino model where this procedure applies.Comment: 28 pages, 4 figures. Typos corrected, references adde
    corecore