24 research outputs found
Trail formation based on directed pheromone deposition
We propose an Individual-Based Model of ant-trail formation. The ants are
modeled as self-propelled particles which deposit directed pheromones and
interact with them through alignment interaction. The directed pheromones
intend to model pieces of trails, while the alignment interaction translates
the tendency for an ant to follow a trail when it meets it. Thanks to adequate
quantitative descriptors of the trail patterns, the existence of a phase
transition as the ant-pheromone interaction frequency is increased can be
evidenced. Finally, we propose both kinetic and fluid descriptions of this
model and analyze the capabilities of the fluid model to develop trail
patterns. We observe that the development of patterns by fluid models require
extra trail amplification mechanisms that are not needed at the
Individual-Based Model level
Effects of alfalfa and organic fertilizer on benzo[a]pyrene dissipation in an aged contaminated soil
Monitoring of microbial hydrocarbon remediation in the soil
Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review
Treatment of a mud pit by bioremediation
The mud generated from oil and natural gas drilling, presents a considerable ecological problem. There are still insufficient remedies for the removal and minimization of these very stable emulsions. Existing technologies that are in use, more or less successfully, treat about 20% of generated waste drilling mud, while the rest is temporarily deposited in so-called mud pits. This study investigated in situ bioremediation of a mud pit. The bioremediation technology used in this case was based on the use of naturally occurring microorganisms, isolated from the contaminated site, which were capable of using the contaminating substances as nutrients. The bioremediation was stimulated through repeated inoculation with a zymogenous microbial consortium, along with mixing, watering and biostimulation. Application of these bioremediation techniques reduced the concentration of total petroleum hydrocarbons from 32.2 to 1.5 g kg(-1) (95% degradation) during six months of treatment
