70 research outputs found
Calcium phosphates and silicon: exploring methods of incorporation
Background: Bioinorganics have been explored as additives to ceramic bone graft substitutes with the aim to improve their performance in repair and regeneration of large bone defects. Silicon (Si), an essential trace element involved in the processes related to bone formation and remodeling, was shown not only to enhance osteoblasts proliferation but also to stimulate the differentiation of mesenchymal stem cells (MSCs) and preosteoblasts into the osteogenic lineage. In this study, the added value of Si to calcium phosphate (CaP) coatings was evaluated. Methods: Tissue culture plastic well plates were coated with a thin CaP layer to which traces amounts of Si were added, either by adsorption or by incorporation through coprecipitation. The physicochemical and structural properties of the coatings were characterized and the dissolution behavior was evaluated. The adsorption/incorporation of Si was successfully achieved and incorporated ions were released from the CaP coatings. Human MSCs were cultured on the coatings to examine the effects of Si on cell proliferation and osteogenic differentiation. For the statistical analysis, a one-way ANOVA with Bonferroni post-hoc test was performed. Results: The results showed that human MSCs (hMSCs) responded to the presence of Si in the CaP coatings, in a dosedependent manner. An increase in the expression of markers of osteogenic differentiation by human MSCs was observed as a result of the increase in Si concentration. Conclusions: The incorporation/adsorption of Si into CaP coatings was successfully achieved and hMSCs responded with an increase in osteogenic genes expression with the increase of Si concentration. Furthermore, hMSCs cultured on CaP-I coatings expressed higher levels of ALP and OP, indicating that this may be the preferred method of incorporation of bioinorganics into CaPsPortuguese Foundation for Science and Technology (FCT) for providing Ana I.
Rodrigues her PhD scholarship (Grant No. SFRH/BD/69962/2010). This work was
partially supported by national funds through the FCT under the scope of the
project OSTEOSYNTHESIS project (PTDC/CTM-BIO/0814/2012) and by the European
Regional Development Fund (FEDER) through the “COMPETE” - Operational
Programme for Competitiveness factors (FCOMP-01-0124-FEDER-028491).info:eu-repo/semantics/publishedVersio
Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds
Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous
scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone
and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering
Comprehensive in vitro and in vivo studies of novel melt-derived Nb-substituted 45S5 bioglass reveal its enhanced bioactive properties for bone healing
The present work presents and discusses the results of a comprehensive study on the bioactive properties of Nb-substituted silicate glass derived from 45S5 bioglass. In vitro and in vivo experiments were performed. We undertook three different types of in vitro analyses: (i) investigation of the kinetics of chemical reactivity and the bioactivity of Nb-substituted glass in simulated body fluid (SBF) by 31P MASNMR spectroscopy, (ii) determination of ionic leaching profiles in buffered solution by inductively coupled plasma optical emission spectrometry (ICP-OES), and (iii) assessment of the compatibility and osteogenic differentiation of human embryonic stem cells (hESCs) treated with dissolution products of different compositions of Nb-substituted glass. The results revealed that Nb-substituted glass is not toxic to hESCs. Moreover, adding up to 1.3 mol% of Nb2O5 to 45S5 bioglass significantly enhanced its osteogenic capacity. For the in vivo experiments, trial glass rods were implanted into circular defects in rat tibia in order to evaluate their biocompatibility and bioactivity. Results showed all Nb-containing glass was biocompatible and that the addition of 1.3 mol% of Nb2O5, replacing phosphorous, increases the osteostimulation of bioglass. Therefore, these results support the assertion that Nb-substituted glass is suitable for biomedical applications
Pediatric Visceral Leishmaniasis in Albania: A Retrospective Analysis of 1,210 Consecutive Hospitalized Patients (1995–2009)
Albania is a developing country that is rapidly improving in social, economic and sanitary conditions. The health care system in still in progress and the impact of some infectious diseases remains poorly understood. In particular, little information is available on incidence, clinical features and response to treatment of visceral leishmaniasis (VL) in childhood. We performed a retrospective analysis of data recorded from 1995 to 2009 at the national pediatric reference hospital of Tirana where any child suspected for VL is referred for specific diagnosis and treatment. Epidemiology, clinical features and management of the disease were considered. The main findings can be summarized as follows: i) The incidence of the disease in Albanian children (25/100,000 in the age group 0–6 years) is much higher than in developed Mediterranean countries endemic for VL; ii) The disease is associated with poor sanitary conditions as suggested by the high rate of severe clinical features and frequency of co-morbidities; iii) The cheapest drug available for Mediterranean VL treatment (meglumine antimoniate) is highly effective (99% full cure rate) and well tolerated. Limitations were identified in the low standard laboratory diagnostic capability and unsatisfactory medical surveillance in less urbanized areas. An improvement is warranted of a disease-specific surveillance system in Albania
In vitro proliferation of human osteogenic cells in presence of different commercial bone substitute materials combined with enamel matrix derivatives
<p>Abstract</p> <p>Background</p> <p>Cellular reactions to alloplastic bone substitute materials (BSM) are a subject of interest in basic research. In regenerative dentistry, these bone grafting materials are routinely combined with enamel matrix derivatives (EMD) in order to additionally enhance tissue regeneration.</p> <p>Materials and methods</p> <p>The aim of this study was to evaluate the proliferative activity of human osteogenic cells after incubation over a period of seven days with commercial BSM of various origin and chemical composition. Special focus was placed on the potential additional benefit of EMD on cellular proliferation.</p> <p>Results</p> <p>Except for PerioGlas<sup>®</sup>, osteogenic cell proliferation was significantly promoted by the investigated BSM. The application of EMD alone also resulted in significantly increased cellular proliferation. However, a combination of BSM and EMD resulted in only a moderate additional enhancement of osteogenic cell proliferation.</p> <p>Conclusion</p> <p>The application of most BSM, as well as the exclusive application of EMD demonstrated a positive impact on the proliferation of human osteogenic cells <it>in vitro</it>. In order to increase the benefit from substrate combination (BSM + EMD), further studies on the interactions between BSM and EMD are needed.</p
Bioactive Hydrogel Marbles
Liquid marbles represented a signifcant advance in the manipulation of fuids as they used particle flms to confne liquid drops, creating a robust and durable soft solid. We exploit this technology to engineering a bioactive hydrogel marble (BHM). Specifcally, pristine bioactive glass nanoparticles were chemically tuned to produce biocompatible hydrophobic bioactive glass nanoparticles (H-BGNPs) that shielded a gelatin-based bead. The designed BHM shell promoted the growth of a bone-like apatite layer upon immersion in a physiological environment. The fabrication process allowed the efcient incorporation of drugs and cells into the engineered structure. The BHM provided a simultaneously controlled release of distinct encapsulated therapeutic model molecules. Moreover, the BHM sustained cell encapsulation in a 3D environment as demonstrated by an excellent in vitro stability and cytocompatibility. The engineered structures also showed potential to regulate a pre-osteoblastic cell line into osteogenic commitment. Overall, these hierarchical nanostructured and functional marbles revealed a high potential for future applications in bone tissue engineering.Portuguese Foundation for Science and Technology − FCT (Grant Nos SFRH/BD/73174/2010 and SFRH/BD/73172/2010, respectively), from the program POPH/FSE from QREN. The authors would like to acknowledge the support of the European Research Council grant agreement ERC-2014-ADG-669858 for project ATLASinfo:eu-repo/semantics/publishedVersio
Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings
Background: Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings.
Methodology: Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 mm, BAF-500), in the implant vicinity (100 mm, BAF-100) and further away (100–500 mm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis.
Principal Findings: After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p.0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-mm compared to the 400-mm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR.
Conclusions: BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn’t stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn’t stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation.status: publishe
Biocompatibility and in vivo osteogenic capability of novel bone tissue engineering scaffold A-W-MGC/CS
Toward Smart Implant Synthesis: Bonding Bioceramics of Different Resorbability to Match Bone Growth Rates
This work was partially funded by the European Union (Project MARMED - 2011-1/164), the Spanish Government and FEDER (CICYT MAT2006-10481) by Xunta de Galicia (CN2012/292)
Chagas disease and systemic autoimmune diseases among Bolivian patients in Switzerland
- …
