40 research outputs found
B-1 cell: the precursor of a novel mononuclear phagocyte with immuno-regulatory properties
Murine Gamma-herpesvirus Immortalization of Fetal Liver-Derived B Cells Requires both the Viral Cyclin D Homolog and Latency-Associated Nuclear Antigen
Human gammaherpesviruses are associated with the development of lymphoproliferative diseases and B cell lymphomas, particularly in immunosuppressed hosts. Understanding the molecular mechanisms by which human gammaherpesviruses cause disease is hampered by the lack of convenient small animal models to study them. However, infection of laboratory strains of mice with the rodent virus murine gammaherpesvirus 68 (MHV68) has been useful in gaining insights into how gammaherpesviruses contribute to the genesis and progression of lymphoproliferative lesions. In this report we make the novel observation that MHV68 infection of murine day 15 fetal liver cells results in their immortalization and differentiation into B plasmablasts that can be propagated indefinitely in vitro, and can establish metastasizing lymphomas in mice lacking normal immune competence. The phenotype of the MHV68 immortalized B cell lines is similar to that observed in lymphomas caused by KSHV and resembles the favored phenotype observed during MHV68 infection in vivo. All established cell lines maintained the MHV68 genome, with limited viral gene expression and little or no detectable virus production - although virus reactivation could be induced upon crosslinking surface Ig. Notably, transcription of the genes encoding the MHV68 viral cyclin D homolog (v-cyclin) and the homolog of the KSHV latency-associated nuclear antigen (LANA), both of which are conserved among characterized γ2-herpesviruses, could consistently be detected in the established B cell lines. Furthermore, we show that the v-cyclin and LANA homologs are required for MHV68 immortalization of murine B cells. In contrast the M2 gene, which is unique to MHV68 and plays a role in latency and virus reactivation in vivo, was dispensable for B cell immortalization. This new model of gammaherpesvirus-driven B cell immortalization and differentiation in a small animal model establishes an experimental system for detailed investigation of the role of gammaherpesvirus gene products and host responses in the genesis and progression of gammaherpesvirus-associated lymphomas, and presents a convenient system to evaluate therapeutic modalities
First-trimester diagnosis and management of Cesarean scar pregnancies after in vitro fertilization-embryo transfer: a retrospective clinical analysis of 12 cases
The value of transvaginal ultrasound in clinical surgical treatment of cesarean scar pregnancy
Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity
Preparation of decellularized lung matrices for cell culture and protein analysis.
The limited available treatment options for patients with chronic lung diseases, such as fibrosis, lead to poor prognosis after diagnosis and short survival rates. An exciting new bioengineering approach utilizes de- and recellularization of lung tissue to potentially overcome donor organ shortage and immune reactions toward the received transplant. The goal of decellularization is to create a scaffold which contains the necessary framework for stability and functionality for regenerating lung tissue while removing immunomodulatory factors by removal of cells. After decellularization, the scaffold could be re-functionalized by repopulation with the patient's own stem/progenitor cells to create a fully functional organ or can be used as ex vivo models of disease. In this chapter the decellularization of lung tissue from multiple species (i.e., rodents, pigs, and humans) as well as disease states such as fibrosis is described. We discuss and describe the various quality control measures which should be used to characterize decellularized scaffolds, methods for protein analysis of the remaining scaffold, and methods for recellularization of scaffolds
B-1 cell: the precursor of a novel mononuclear phagocyte with immuno-regulatory properties
Characterization of the origin, properties, functions and fate of cells is a fundamental task for the understanding of physiological and pathological phenomena. Despite the bulk of knowledge concerning the diverse characteristics of mammalian cells, some of them, such as B-1 cells, are still poorly understood. Here we report the results obtained in our laboratory on these cells in the last 10 years. After showing that B-1 cells could be cultured and amplified in vitro, a series of experiments were performed with these cells. They showed that B1 cells reside mostly in the peritoneal and pleural cavities, migrate to distant inflammatory foci, coalesce to form giant cells and participate in granuloma formation, both in vitro and in vivo. They are also able to present antigens to immunologically responsive cells and are endowed with regulatory properties. Further, we have also shown that these cells facilitate different types of infection as well as tumor growth and spreading. These data are presently reviewed pointing to a pivotal role that these cells may play in innate and acquired immunity.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Paulo, Dept Microbiol Imunol & Parasitol, BR-04023900 Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Microbiol Imunol & Parasitol, BR-04023900 Sao Paulo, BrazilFAPESP: 07/51501-9FAPESP: 04/08506-1Web of Scienc
Ectopic Runx1 Expression Rescues Tal-1-Deficiency in the Generation of Primitive and Definitive Hematopoiesis
The transcription factors SCL/Tal-1 and AML1/Runx1 control the generation of pluripotent hematopoietic stem cells (pHSC) and, thereby, primitive and definitive hematopoiesis, during embryonic development of the mouse from mesoderm. Thus, Runx1-deficient mice generate primitive, but not definitive hematopoiesis, while Tal-1-deficient mice are completely defective. Primitive as well as definitive hematopoiesis can be developed “in vitro” from embryonic stem cells (ESC). We show that wild type, as well as Tal-1(−/−) and Runx1(−/−) ESCs, induced to differentiation, all expand within 5 days to comparable numbers of Flk1(+) mesodermal cells. While wild type ESCs further differentiate to primitive and definitive erythrocytes, to c-fms(+)Gr1(+)Mac1(+) myeloid cells, and to B220(+)CD19(+) B- and CD4(+)/CD8(+) T-lymphoid cells, Runx1(−/−) ESCs, as expected, only develop primitive erythrocytes, and Tal-1(−/−) ESCs do not generate any hematopoietic cells. Retroviral transduction with Runx1 of Runx1(−/−) ESCs, differentiated for 4 days to mesoderm, rescues definitive erythropoiesis, myelopoiesis and lymphopoiesis, though only with 1–10% of the efficiencies of wild type ESC hematopoiesis. Surprisingly, Tal-1(−/−) ESCs can also be rescued at comparably low efficiencies to primitive and definitive erythropoiesis, and to myelopoiesis and lymphopoiesis by retroviral transduction with Runx1. These results suggest that Tal-1 expression is needed to express Runx1 in mesoderm, and that ectopic expression of Runx1 in mesoderm is sufficient to induce primitive as well as definitive hematopoiesis in the absence of Tal-1. Retroviral transduction of “in vitro” differentiating Tal-1(−/−) and Runx1(−/−) ESCs should be a useful experimental tool to probe selected genes for activities in the generation of hematopoietic progenitors “in vitro”, and to assess the potential transforming activities in hematopoiesis of mutant forms of Tal-1 and Runx1 from acute myeloid leukemia and related tumors
