49 research outputs found
Results from PAMELA, ATIC and FERMI : Pulsars or Dark Matter ?
It is well known that the dark matter dominates the dynamics of galaxies and
clusters of galaxies. Its constituents remain a mystery despite an assiduous
search for them over the past three decades. Recent results from the
satellite-based PAMELA experiment detect an excess in the positron fraction at
energies between 10-100 GeV in the secondary cosmic ray spectrum. Other
experiments namely ATIC, HESS and FERMI show an excess in the total electron
(\ps + \el) spectrum for energies greater 100 GeV. These excesses in the
positron fraction as well as the electron spectrum could arise in local
astrophysical processes like pulsars, or can be attributed to the annihilation
of the dark matter particles. The second possibility gives clues to the
possible candidates for the dark matter in galaxies and other astrophysical
systems. In this article, we give a report of these exciting developments.Comment: 27 Pages, extensively revised and significantly extended, to appear
in Pramana as topical revie
Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors
We explore the physics potential of multi-megaton scale ice or water
Cherenkov detectors with low ( GeV) threshold. Using some proposed
characteristics of the PINGU detector setup we compute the distributions of
events versus neutrino energy and zenith angle , and study
their dependence on yet unknown neutrino parameters. The
regions are identified where the distributions have the highest sensitivity to
the neutrino mass hierarchy, to the deviation of the 2-3 mixing from the
maximal one and to the CP-phase. We evaluate significance of the measurements
of the neutrino parameters and explore dependence of this significance on the
accuracy of reconstruction of the neutrino energy and direction. The effect of
degeneracy of the parameters on the sensitivities is also discussed. We
estimate the characteristics of future detectors (energy and angle resolution,
volume, etc.) required for establishing the neutrino mass hierarchy with high
confidence level. We find that the hierarchy can be identified at --
level (depending on the reconstruction accuracies) after 5 years of
PINGU operation.Comment: 39 pages, 21 figures. Description of Fig.3 correcte
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
CALIS - A CALibration Insertion System for the DarkSide-50 dark matter search experiment
© 2017 The Author(s). This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below
Constraints on the origin of cosmic rays above 1018 eV from large scale anisotropy searches in data of the Pierre Auger Observatory
A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory is reported. For the first time, these large-scale anisotropy searches are performed as a function of both the right ascension and the declination and expressed in terms of dipole and quadrupole moments. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Upper limits on dipole and quadrupole amplitudes are derived under the hypothesis that any cosmic ray anisotropy is dominated by such moments in this energy range. These upper limits provide constraints on the production of cosmic rays above 1018 eV, since they allow us to challenge an origin from stationary galactic sources densely distributed in the galactic disk and emitting predominantly light particles in all directions
Recommended from our members
Latest results of dark matter detection with the DarkSide experiment
In this contribution the latest results of dark matter direct detection obtained by the DarkSide Collaboration are discussed. New limits on the scattering cross-section between dark matter particles and baryonic matter have been set. The results have been reached using the DarkSide-50 detector, a double-phase Time Projection Chamber (TPC) filled with 40Ar and installed at Laboratori Nazionali del Gran Sasso (LNGS). In 2018, the DarkSide Collaboration has performed three different types of analysis. The so-called high-mass analysis into the range between ∼ 10 GeV and ∼ 1000 GeV is discussed under the hypothesis of scattering between dark matter and Ar nuclei. The low-mass analysis, performed using the same hypothesis, extends the limit down to ∼1.8 GeV. Through a different hypothesis, that predicts dark matter scattering off the electrons inside of the Ar atom, it has been possible to set limits for sub-GeV dark matter masses
Recommended from our members
A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory
Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p-values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. These limits significantly constrain predictions of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region
Recommended from our members
DarkSide: Latest results and future perspectives
DarkSide is direct-detection dark-matter experimental project based on radiopure argon. The main goal of the DarkSide program is the detection of rare nuclear elastic collisions with hypothetical dark-matter particles. The present detector, DarkSide-50, placed at Laboratori Nazionali del Gran Sasso (LNGS), is a dualphase time projection chamber (TPC) filled with ultra-pure liquid argon, extracted from underground sources. Surrounding the TPC to suppress the background there are neutron and muon active vetoes. One of argon key features is the capability to distinguish between electron and nuclear recoils, exploiting the different shapes of the signals. DarkSide-50 new results, obtained using a live-days exposure of 532.4 days, are presented. This analysis sets a 90% C.L. upper limit on the dark matternucleon spin-independent cross-section of 1.1 × 10-44 cm2 for a WIMP mass of 100 GeV/c2. The next phase of the project, DarkSide-20k, will be a new detector with a fiducial mass of ∼ 20 tons, equipped with cryogenic silicon photomultipliers (SiPM)
