23,959 research outputs found

    Passive tracers in a general circulation model of the Southern Ocean

    Get PDF
    Passive tracers are used in an o?-line version of the United Kingdom Fine Resolution Antarctic Model (FRAM) to highlight features of the circulation and provide information on the inter-ocean exchange of water masses. The use of passive tracers allows a picture to be built up of the deep circulation which is not readily apparent from examination of the velocity or density ®elds. Comparison of observations with FRAM results gives good agreement for many features of the Southern Ocean circulation. Tracer distributions are consistent with the concept of a global ``conveyor belt'' with a return path via the Agulhas retro¯ection region for the replenishment of North Atlantic Deep Water

    On the development of a soccer player performance rating system for the English premier league

    Get PDF
    The EA Sports Player Performance Index is a rating system for soccer players used in the top two tiers of soccer in England—the Premier League and the Championship. Its development was a collaboration among professional soccer leagues, a news media association, and academia. In this paper, we describe the index and its construction. The novelty of the index lies in its attempts to rate all players using a single score, regardless of their playing specialty, based on player contributions to winning performances. As one might expect, players from leading teams lead the index, although surprises happen

    Multifactoring concept – A key to investigation of forced-eoiling in microsystems

    Get PDF
    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.In the present paper forced-boiling in microsystems is considered in the light of fundamentals of boiling heat transfer such as local temperature pulsations of heating surface (Moore and Mesler, 1961), pumping effect of growing bubble (PEGB)(Shekriladze, 1966), a model of “the theatre of director” (MTD) (Shekriladze and Ratiani, 1966) and multifactoring concept (MFC) (Shekriladze, 2006). An attempt is made to resolve a contradiction between accordance of heat transfer process to developed boiling heat transfer law in the major part of experiments and qualitatively differing trends in the other part of processes. The problem of interpretation of generation of strong reverse vapor flows, related cyclical oscillations and flow instabilities also is touched. According to presented analysis leading role in specific thermo-hydrodynamic characteristics of boiling microsystems is played by so-called duration-dependent multifactoring which, by its part, is linked to transition to prolonged action of microlayer evaporation (MLE) and PEGB. As a result drastically increases a number of influencing heat transfer factors extremely complicating description of the process. At the same time prolongation of intensive stage of acting of MLE and PEGB creates prerequisites for specific thermo-hydrodynamic appearances

    How good is Tiger Woods?

    Get PDF
    A major objective of professional sport is to find out which player or team is the best. Unfortunately the structure of some sports means that this is often a difficult question to answer. For example, there may be too many competitors to run a round-robin league, whilst knock-out tournaments do not compare every player with every other player. The problem gets worse when one has to compare players whose performance varies over time. Fortunately mathematical modelling can help and in this article, we use the Plackett-Luce model to estimate time-varying player strengths of golfers. We use the model to investigate how good golf's current biggest attraction, Tiger Woods, really is

    Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas

    Get PDF
    A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al. 2009) for pressure-anisotropic plasmas, allowing for species drifts---a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas (e.g. intracluster medium). Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g., the Alfven ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. The main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvenic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the Alfvenic cascade is fluid, satisfying RMHD equations (with the Alfven speed modified by pressure anisotropy and species drifts), whereas the compressive cascade is kinetic and subject to collisionless damping. Secondly, the organising principle of this turbulence is elucidated in the form of a generalised kinetic free-energy invariant. It is shown that non-Maxwellian features in the distribution function reduce the rate of phase mixing and the efficacy of magnetic stresses; these changes influence the partitioning of free energy amongst the various cascade channels. As the firehose or mirror instability thresholds are approached, the dynamics of the plasma are modified so as to reduce the energetic cost of bending magnetic-field lines or of compressing/rarefying them. Finally, it is shown that this theory can be derived as a long-wavelength limit of non-Maxwellian slab gyrokinetics.Comment: 61 pages, accepted to Journal of Plasma Physics; Abstract abridge

    Indirect Dissociative Recombination of LiH+^+ Molecules Fueled by Complex Resonance Manifolds

    Get PDF
    The LiH+^{+} molecule is prototypical of the indirect dissociative recombination (DR) process, in which a colliding electron destroys the molecule through Rydberg capture pathways. This Letter develops the first quantitative test of the Siegert state multichannel quantum defect theory description of indirect DR for a diatomic molecular ion. The R-matrix approach is adopted to calculate ab-initio quantum defects, functions of the internuclear distance that characterize both Rydberg states and the zero-energy collisions of electrons with LiH+^{+} ions. The calculated DR rate coefficient agrees accurately with recent experimental data (S. Krohn et al, Phys. Rev. Lett. 86, 4005). We identify the doorways to fast indirect DR as complex resonance manifolds, which couple closed channels having both high and low principal quantum numbers. This sheds new light on the competition between direct and indirect DR pathways, and suggests the reason why previous theory underestimated the DR rate by an order of magnitude.Comment: Submitted to PR
    corecore