743 research outputs found
A Dimension-Adaptive Multi-Index Monte Carlo Method Applied to a Model of a Heat Exchanger
We present an adaptive version of the Multi-Index Monte Carlo method,
introduced by Haji-Ali, Nobile and Tempone (2016), for simulating PDEs with
coefficients that are random fields. A classical technique for sampling from
these random fields is the Karhunen-Lo\`eve expansion. Our adaptive algorithm
is based on the adaptive algorithm used in sparse grid cubature as introduced
by Gerstner and Griebel (2003), and automatically chooses the number of terms
needed in this expansion, as well as the required spatial discretizations of
the PDE model. We apply the method to a simplified model of a heat exchanger
with random insulator material, where the stochastic characteristics are
modeled as a lognormal random field, and we show consistent computational
savings
Application of quasi-Monte Carlo methods to PDEs with random coefficients -- an overview and tutorial
This article provides a high-level overview of some recent works on the
application of quasi-Monte Carlo (QMC) methods to PDEs with random
coefficients. It is based on an in-depth survey of a similar title by the same
authors, with an accompanying software package which is also briefly discussed
here. Embedded in this article is a step-by-step tutorial of the required
analysis for the setting known as the uniform case with first order QMC rules.
The aim of this article is to provide an easy entry point for QMC experts
wanting to start research in this direction and for PDE analysts and
practitioners wanting to tap into contemporary QMC theory and methods.Comment: arXiv admin note: text overlap with arXiv:1606.0661
Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps
Coarse spaces are instrumental in obtaining scalability for domain decomposition methods for partial differential equations (PDEs). However, it is known that most popular choices of coarse spaces perform rather weakly in the presence of heterogeneities in the PDE coefficients, especially for systems of PDEs. Here, we introduce in a variational setting a new coarse space that is robust even when there are such heterogeneities. We achieve this by solving local generalized eigenvalue problems in the overlaps of subdomains that isolate the terms responsible for slow convergence. We prove a general theoretical result that rigorously establishes the robustness of the new coarse space and give some numerical examples on two and three dimensional heterogeneous PDEs and systems of PDEs that confirm this property
Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains
We explore the connection between fractional order partial differential
equations in two or more spatial dimensions with boundary integral operators to
develop techniques that enable one to efficiently tackle the integral
fractional Laplacian. In particular, we develop techniques for the treatment of
the dense stiffness matrix including the computation of the entries, the
efficient assembly and storage of a sparse approximation and the efficient
solution of the resulting equations. The main idea consists of generalising
proven techniques for the treatment of boundary integral equations to general
fractional orders. Importantly, the approximation does not make any strong
assumptions on the shape of the underlying domain and does not rely on any
special structure of the matrix that could be exploited by fast transforms. We
demonstrate the flexibility and performance of this approach in a couple of
two-dimensional numerical examples
Hot new directions for quasi-Monte Carlo research in step with applications
This article provides an overview of some interfaces between the theory of
quasi-Monte Carlo (QMC) methods and applications. We summarize three QMC
theoretical settings: first order QMC methods in the unit cube and in
, and higher order QMC methods in the unit cube. One important
feature is that their error bounds can be independent of the dimension
under appropriate conditions on the function spaces. Another important feature
is that good parameters for these QMC methods can be obtained by fast efficient
algorithms even when is large. We outline three different applications and
explain how they can tap into the different QMC theory. We also discuss three
cost saving strategies that can be combined with QMC in these applications.
Many of these recent QMC theory and methods are developed not in isolation, but
in close connection with applications
Acceleration of generalized hypergeometric functions through precise remainder asymptotics
We express the asymptotics of the remainders of the partial sums {s_n} of the
generalized hypergeometric function q+1_F_q through an inverse power series z^n
n^l \sum_k c_k/n^k, where the exponent l and the asymptotic coefficients {c_k}
may be recursively computed to any desired order from the hypergeometric
parameters and argument. From this we derive a new series acceleration
technique that can be applied to any such function, even with complex
parameters and at the branch point z=1. For moderate parameters (up to
approximately ten) a C implementation at fixed precision is very effective at
computing these functions; for larger parameters an implementation in higher
than machine precision would be needed. Even for larger parameters, however,
our C implementation is able to correctly determine whether or not it has
converged; and when it converges, its estimate of its error is accurate.Comment: 36 pages, 6 figures, LaTeX2e. Fixed sign error in Eq. (2.28), added
several references, added comparison to other methods, and added discussion
of recursion stabilit
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
From the animal house to the field : are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?
Inbred mouse strains, living in simple laboratory environments far removed from nature, have been shown to vary consistently in their immune response. However, wildlife populations are typically outbreeding and face a multiplicity of challenges, parasitological and otherwise. In this study we seek evidence of consistent difference in immunological profile amongst individuals in the wild. We apply a novel method in this context, using longitudinal (repeated capture) data from natural populations of field voles, Microtus agrestis, on a range of life history and infection metrics, and on gene expression levels. We focus on three immune genes, IFN-γ, Gata3, and IL-10, representing respectively the Th1, Th2 and regulatory elements of the immune response. Our results show that there was clear evidence of consistent differences between individuals in their typical level of expression of at least one immune gene, and at most all three immune genes, after other measured sources of variation had been taken into account. Furthermore, individuals that responded to changing circumstances by increasing expression levels of Gata3 had a correlated increase in expression levels of IFN-γ. Our work stresses the importance of acknowledging immunological variation amongst individuals in studies of parasitological and infectious disease risk in wildlife populations
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
- …
