807 research outputs found

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Evaluation of the safety of C-spine clearance by paramedics: design and methodology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Canadian Emergency Medical Services annually transport 1.3 million patients with potential neck injuries to local emergency departments. Less than 1% of those patients have a c-spine fracture and even less (0.5%) have a spinal cord injury. Most injuries occur before the arrival of paramedics, not during transport to the hospital, yet most patients are transported in ambulances immobilized. They stay fully immobilized until a bed is available, or until physician assessment and/or X-rays are complete. The prolonged immobilization is often unnecessary and adds to the burden of already overtaxed emergency medical services systems and crowded emergency departments.</p> <p>Methods/Design</p> <p>The goal of this study is to evaluate the safety and potential impact of an active strategy that allows paramedics to assess very low-risk trauma patients using a validated clinical decision rule, the Canadian C-Spine Rule, in order to determine the need for immobilization during transport to the emergency department.</p> <p>This cohort study will be conducted in Ottawa, Canada with one emergency medical service. Paramedics with this service participated in an earlier validation study of the Canadian C-Spine Rule. Three thousand consecutive, alert, stable adult trauma patients with a potential c-spine injury will be enrolled in the study and evaluated using the Canadian C-Spine Rule to determine the need for immobilization. The outcomes that will be assessed include measures of safety (numbers of missed fractures and serious adverse outcomes), measures of clinical impact (proportion of patients transported without immobilization, key time intervals) and performance of the Rule.</p> <p>Discussion</p> <p>Approximately 40% of all very low-risk trauma patients could be transported safely, without c-spine immobilization, if paramedics were empowered to make clinical decisions using the Canadian C-Spine Rule. This safety study is an essential step before allowing all paramedics across Canada to selectively immobilize trauma victims before transport. Once safety and potential impact are established, we intend to implement a multi-centre study to study actual impact.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01188447">NCT01188447</a></p

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Population-based BRCA1/2 testing programmes are highly acceptable in the Jewish community: results of the JeneScreen Study

    Full text link
    Background Ashkenazi Jewish (AJ) people have a higher incidence of BRCA1/2 pathogenic variants (PVs) than unselected populations. Three BRCA-Jewish founder mutations (B-JFMs) comprise >90% of BRCA1/2 PVs in AJ people. Personal/family cancer history-based testing misses ≥50% of people with B-JFM. Methods We compared two population-based B-JFM screening programmes in Australia-using (1) an online tool (Sydney) and (2) in-person group sessions (Melbourne). Results Of 2167 Jewish people tested (Sydney n=594; Melbourne n=1573), 1.3% (n=28) have a B-JFM, only 2 of whom had a significant cancer family history (Manchester score ≥12). Pretest anxiety scores were normal (mean 9.9±3.5 (6-24)), with no significant post-result change (9.5±3.3). Decisional regret (mean 7.4±13.0 (0-100)), test-related distress (mean 0.8+/2.2 (0-30)) and positive experiences (reverse-scored) (mean 3.4±4.5 (1-20)) scores were low, with no significant differences between Sydney and Melbourne participants. Post-education knowledge was good overall (mean 11.8/15 (±2.9)) and significantly higher in Melbourne than Sydney. Post-result knowledge was the same (mean 11.7 (±2.4) vs 11.2 (±2.4)). Participants with a B-JFM had higher post-result anxiety and test-related distress and lower positive experiences, than those without a B-JFM, but scores were within the normal range. Family cancer history did not significantly affect knowledge or anxiety, or pretest perception of B-JFM or cancer risks. Most participants (93%) were satisfied/very satisfied with the programme. Conclusion Both B-JFM screening programmes are highly acceptable to Australian Jewish communities. The programme enabled identification of several individuals who were previously unaware they have a B-JFM, many of whom would have been ineligible for current criteria-based testing in Australia
    corecore