1,258 research outputs found
Recommended from our members
Dust, Ice, and Gas in Time (DIGIT) Herschel Observations of GSS30-IRS1 in Ophiuchus
As a part of the "Dust, Ice, and Gas In Time" (DIGIT) key program on Herschel, we observed GSS30-IRS1, a Class I protostar located in Ophiuchus (d = 120 pc), with Herschel/Photodetector Array Camera and Spectrometer. More than 70 lines were detected within a wavelength range from 50 to 200 mu m, including CO, H2O, OH, and two atomic [O I] lines at 63 and 145 mu m. The [C II] line, known as a tracer of externally heated gas by the interstellar radiation field (ISRF), is also detected at 158 mu m. All lines, except [O I] and [C II], are detected only at the central spaxel of 9 ''.4 x 9 ''.4. The [O I] emissions are extended along a NE-SW orientation, and the [C II] line is detected over all spaxels, indicative of an external photodissociation region. The total [C II] intensity around GSS30 reveals that the far-ultraviolet radiation field is in the range of 3 to 20 G(0), where G(0) is in units of the Habing Field, 1.6 x 10(-3) erg cm(-2) s(-1). This enhanced external radiation field heats the envelope of GSS30-IRS1, causing the continuum emission to be extended, unlike the molecular emission. The best-fit continuum model of GSS30-IRS1 with the physical structure including flared disk, envelope, and outflow shows that the internal luminosity is 10 L-circle dot, and the region is externally heated by a radiation field enhanced by a factor of 130 compared to the standard local ISRF.NASANational Research Foundation of Korea (NRF) - Ministry of Education of the Korean government NRF-2012R1A1A2044689National Research Foundation (NRF) - Ministry of Education of KoreaAstronom
The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models
We use Herschel spectrophotometry of BHR71, an embedded Class 0 protostar, to
provide new constraints on its physical properties. We detect 645 (non-unique)
spectral lines amongst all spatial pixels. At least 61 different spectral lines
originate from the central region. A CO rotational diagram analysis shows four
excitation temperature components, 43 K, 197 K, 397 K, and 1057 K. Low-J CO
lines trace the outflow while the high-J CO lines are centered on the infrared
source. The low-excitation emission lines of H2O trace the large-scale outflow,
while the high-excitation emission lines trace a small-scale distribution
around the equatorial plane. We model the envelope structure using the dust
radiative transfer code, Hyperion, incorporating rotational collapse, an outer
static envelope, outflow cavity, and disk. The evolution of a rotating
collapsing envelope can be constrained by the far-infrared/millimeter SED along
with the azimuthally-averaged radial intensity profile, and the structure of
the outflow cavity plays a critical role at shorter wavelengths. Emission at
20-40 um requires a cavity with a constant-density inner region and a power-law
density outer region. The best fit model has an envelope mass of 19 solar mass
inside a radius of 0.315 pc and a central luminosity of 18.8 solar luminosity.
The time since collapse began is 24630-44000 yr, most likely around 36000 yr.
The corresponding mass infall rate in the envelope (1.2x10 solar mass
per year) is comparable to the stellar mass accretion rate, while the mass loss
rate estimated from the CO outflow is 20% of the stellar mass accretion rate.
We find no evidence for episodic accretion.Comment: Accepted for publication in ApJ. 33 pages; 34 figures; 4 table
Effects of Residue Background Events in Direct Dark Matter Detection Experiments on the Determination of the WIMP Mass
In the earlier work on the development of a model-independent data analysis
method for determining the mass of Weakly Interacting Massive Particles (WIMPs)
by using measured recoil energies from direct Dark Matter detection experiments
directly, it was assumed that the analyzed data sets are background-free, i.e.,
all events are WIMP signals. In this article, as a more realistic study, we
take into account a fraction of possible residue background events, which pass
all discrimination criteria and then mix with other real WIMP-induced events in
our data sets. Our simulations show that, for the determination of the WIMP
mass, the maximal acceptable fraction of residue background events in the
analyzed data sets of O(50) total events is ~20%, for background windows of the
entire experimental possible energy ranges, or in low energy ranges; while, for
background windows in relatively higher energy ranges, this maximal acceptable
fraction of residue background events can not be larger than ~10%. For a WIMP
mass of 100 GeV with 20% background events in the windows of the entire
experimental possible energy ranges, the reconstructed WIMP mass and the
1-sigma statistical uncertainty are ~97 GeV^{+61%}_{-35%} (~94
GeV^{+55%}_{-33%} for background-free data sets).Comment: 27 pages, 22 eps figures; v2: revised version for publication,
references added and update
Warm gas towards young stellar objects in Corona Australis - Herschel/PACS observations from the DIGIT key programme
The effects of external irradiation on the chemistry and physics in the
protostellar envelope around low-mass young stellar objects are poorly
understood. The Corona Australis star-forming region contains the R CrA dark
cloud, comprising several low-mass protostellar cores irradiated by an
intermediate-mass young star. We study the effects on the warm gas and dust in
a group of low-mass young stellar objects from the irradiation by the young
luminous Herbig Be star R CrA. Herschel/PACS far-infrared datacubes of two
low-mass star-forming regions in the R CrA dark cloud are presented. The
distribution of CO, OH, H2O, [C II], [O I], and continuum emission is
investigated. We have developed a deconvolution algorithm which we use to
deconvolve the maps, separating the point-source emission from the extended
emission. We also construct rotational diagrams of the molecular species. By
deconvolution of the Herschel data, we find large-scale (several thousand AU)
dust continuum and spectral line emission not associated with the point
sources. Similar rotational temperatures are found for the warm CO (
K), hot CO ( K), OH ( K), and H2O ( K) emission,
respectively, in the point sources and the extended emission. The rotational
temperatures are also similar to what is found in other more isolated cores.
The extended dust continuum emission is found in two ridges similar in extent
and temperature to molecular mm emission, indicative of external heating from
the Herbig Be star R CrA. Our results show that a nearby luminous star does not
increase the molecular excitation temperatures in the warm gas around a young
stellar object (YSO). However, the emission from photodissociation products of
H2O, such as OH and O, is enhanced in the warm gas associated with these
protostars and their surroundings compared to similar objects not suffering
from external irradiation.Comment: 37 pages, accepted for publication in A&
Recommended from our members
L1448-MM Observations by the Herschel Key Program, "Dust, Ice, and Gas in Time" (DIGIT)
We present Herschel/Photodetector Array Camera and Spectrometer (PACS) observations of L1448-MM, a Class 0 protostar with a prominent outflow. Numerous emission lines are detected at 55 1000 K) environment, indicative of a shock origin. For OH, IR-pumping processes play an important role in the level population. The molecular emission in L1448-MM is better explained with a C-shock model, but the atomic emission of PACS [O I] and Spitzer/Infrared Spectrograph [Si II] emission is not consistent with C-shocks, suggesting multiple shocks in this region. Water is the major line coolant of L1448-MM in the PACS wavelength range, and the best-fit LVG models predict that H2O and CO emit (50%-80%) of their line luminosity in the PACS wavelength range.Herschel Open Time Key Project ProgramNASAJet Propulsion Laboratory, California Institute of TechnologyBasic Science Research Program through the National Research Foundation of Korea (NRF)Ministry of Education of the Korean government NRF-2010-0008704, NRF-2012R1A1A2044689Core Research Program of NRFMinistry of Science, ICTFuture Planning of the Korean government NRF-2011-0015816Korea Astronomy and Space Science InstituteKorean government (MEST)Astronom
An Analysis of the Environments of FU Orionis Objects with Herschel
We present Herschel-HIFI, SPIRE, and PACS 50-670 {\mu}m imaging and
spectroscopy of six FU Orionis-type objects and candidates (FU Orionis, V1735
Cyg, V1515 Cyg, V1057 Cyg, V1331 Cyg, and HBC 722), ranging in outburst date
from 1936-2010, from the "FOOSH" (FU Orionis Objects Surveyed with Herschel)
program, as well as ancillary results from Spitzer-IRS and the Caltech
Submillimeter Observatory. In their system properties (Lbol, Tbol, line
emission), we find that FUors are in a variety of evolutionary states.
Additionally, some FUors have features of both Class I and II sources: warm
continuum consistent with Class II sources, but rotational line emission
typical of Class I, far higher than Class II sources of similar
mass/luminosity. Combining several classification techniques, we find an
evolutionary sequence consistent with previous mid-IR indicators. We detect [O
I] in every source at luminosities consistent with Class 0/I protostars, much
greater than in Class II disks. We detect transitions of 13CO (J_up of 5 to 8)
around two sources (V1735 Cyg and HBC 722) but attribute them to nearby
protostars. Of the remaining sources, three (FU Ori, V1515 Cyg, and V1331 Cyg)
exhibit only low-lying CO, but one (V1057 Cyg) shows CO up to J = 23 - 22 and
evidence for H2O and OH emission, at strengths typical of protostars rather
than T Tauri stars. Rotational temperatures for "cool" CO components range from
20-81 K, for ~ 10^50 total CO molecules. We detect [C I] and [N II] primarily
as diffuse emission.Comment: 31 pages, 15 figures; accepted to Ap
- …
