7 research outputs found
An ecological future for weed science to sustain crop production and the environment. A review
Sustainable strategies for managing weeds are critical to meeting agriculture's potential to feed the world's population while conserving the ecosystems and biodiversity on which we depend. The dominant paradigm of weed management in developed countries is currently founded on the two principal tools of herbicides and tillage to remove weeds. However, evidence of negative environmental impacts from both tools is growing, and herbicide resistance is increasingly prevalent. These challenges emerge from a lack of attention to how weeds interact with and are regulated by the agroecosystem as a whole. Novel technological tools proposed for weed control, such as new herbicides, gene editing, and seed destructors, do not address these systemic challenges and thus are unlikely to provide truly sustainable solutions. Combining multiple tools and techniques in an Integrated Weed Management strategy is a step forward, but many integrated strategies still remain overly reliant on too few tools. In contrast, advances in weed ecology are revealing a wealth of options to manage weedsat the agroecosystem levelthat, rather than aiming to eradicate weeds, act to regulate populations to limit their negative impacts while conserving diversity. Here, we review the current state of knowledge in weed ecology and identify how this can be translated into practical weed management. The major points are the following: (1) the diversity and type of crops, management actions and limiting resources can be manipulated to limit weed competitiveness while promoting weed diversity; (2) in contrast to technological tools, ecological approaches to weed management tend to be synergistic with other agroecosystem functions; and (3) there are many existing practices compatible with this approach that could be integrated into current systems, alongside new options to explore. Overall, this review demonstrates that integrating systems-level ecological thinking into agronomic decision-making offers the best route to achieving sustainable weed management
Unraveling diversity in wheat competitive ability traits can improve integrated weed management
Cereal density and N-fertiliser effects on the flora and biodiversity value of arable headlands
Wheat root length and not branching is altered in the presence of neighbours, including blackgrass
Climate Change and Weeds of Cropping Systems
The impacts of weeds in cropping systems are diverse and costly. Direct expenditure on control and biosecurity measures costs society billions each year. Even with such heavy investment in prevention and control, weeds continue to reduce the quality and quantity of agricultural produce and represent a significant threat to global food production. The challenge of managing weeds in cropping systems is rendered increasingly complex given the diverse and unpredictable impacts of climate change on both weeds and crops. Atmospheric CO2, temperature and precipitation are key drivers of plant growth, and weeds, like all other plant species, will need to respond to climate change in order to survive. Weed species are by their very nature survivors, able to relocate, acclimate or adapt to changing environmental conditions, with genetic diversity that could confer a natural competitive advantage over crop species. Conversely, modern crops are the result of extensive and highly sophisticated breeding to improve their genetic potential to survive in challenging conditions, including herbicide application, limited soil moisture and high temperatures. Moreover, agricultural weeds evolve in highly managed environments, and management intervention through crop selection, crop planting strategies and weed control measures may exert stronger selection pressures on weed species relative to climate change. It is, however, reasonable to assert that evolution driven by management pressures could occur simultaneously to climate-driven adaptation. For this reason, even given the rapid advancement of increasingly sophisticated weed control technology, weed management now and in the future should be guided a sound understanding of evolutionary biology
