67 research outputs found

    Upper extremity impairments in women with or without lymphedema following breast cancer treatment

    Get PDF
    Breast-cancer-related lymphedema affects ∼25% of breast cancer (BC) survivors and may impact use of the upper limb during activity. The purpose of this study is to compare upper extremity (UE) impairment and activity between women with and without lymphedema after BC treatment. 144 women post BC treatment completed demographic, symptom, and Disability of Arm-Shoulder-Hand (DASH) questionnaires. Objective measures included Purdue pegboard, finger-tapper, Semmes-Weinstein monofilaments, vibration perception threshold, strength, range of motion (ROM), and volume. Women with lymphedema had more lymph nodes removed (p < .001), more UE symptoms (p < .001), higher BMI (p = .041), and higher DASH scores (greater limitation) (p < .001). For all participants there was less strength (elbow flexion, wrist flexion, grip), less shoulder ROM, and decreased sensation at the medial upper arm (p < .05) in the affected UE. These differences were greater in women with lymphedema, particularly in shoulder abduction ROM (p < .05). Women with lymphedema had bilaterally less elbow flexion strength and shoulder ROM (p < .05). Past diagnosis of lymphedema, grip strength, shoulder abduction ROM, and number of comorbidities contributed to the variance in DASH scores (R 2 of 0.463, p < .001). UE impairments are found in women following treatment for BC. Women with lymphedema have greater UE impairment and limitation in activities than women without. Many of these impairments are amenable to prevention measures or treatment, so early detection by health care providers is essential

    CovidNeuroOnc: A UK multicenter, prospective cohort study of the impact of the COVID-19 pandemic on the neuro-oncology service

    Get PDF
    BackgroundThe COVID-19 pandemic has profoundly affected cancer services. Our objective was to determine the effect of the COVID-19 pandemic on decision making and the resulting outcomes for patients with newly diagnosed or recurrent intracranial tumors.MethodsWe performed a multicenter prospective study of all adult patients discussed in weekly neuro-oncology and skull base multidisciplinary team meetings who had a newly diagnosed or recurrent intracranial (excluding pituitary) tumor between 01 April and 31 May 2020. All patients had at least 30-day follow-up data. Descriptive statistical reporting was used.ResultsThere were 1357 referrals for newly diagnosed or recurrent intracranial tumors across 15 neuro-oncology centers. Of centers with all intracranial tumors, a change in initial management was reported in 8.6% of cases (n = 104/1210). Decisions to change the management plan reduced over time from a peak of 19% referrals at the start of the study to 0% by the end of the study period. Changes in management were reported in 16% (n = 75/466) of cases previously recommended for surgery and 28% of cases previously recommended for chemotherapy (n = 20/72). The reported SARS-CoV-2 infection rate was similar in surgical and non-surgical patients (2.6% vs. 2.4%, P > .9).ConclusionsDisruption to neuro-oncology services in the UK caused by the COVID-19 pandemic was most marked in the first month, affecting all diagnoses. Patients considered for chemotherapy were most affected. In those recommended surgical treatment this was successfully completed. Longer-term outcome data will evaluate oncological treatments received by these patients and overall survival

    C/EBPβ Promotes Transition from Proliferation to Hypertrophic Differentiation of Chondrocytes through Transactivation of p57Kip2

    Get PDF
    BACKGROUND: Although transition from proliferation to hypertrophic differentiation of chondrocytes is a crucial step for endochondral ossification in physiological skeletal growth and pathological disorders like osteoarthritis, the underlying mechanism remains an enigma. This study investigated the role of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) in chondrocytes during endochondral ossification. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryos with homozygous deficiency in C/EBPbeta (C/EBPbeta-/-) exhibited dwarfism with elongated proliferative zone and delayed chondrocyte hypertrophy in the growth plate cartilage. In the cultures of primary C/EBPbeta-/- chondrocytes, cell proliferation was enhanced while hypertrophic differentiation was suppressed. Contrarily, retroviral overexpression of C/EBPbeta in chondrocytes suppressed the proliferation and enhanced the hypertrophy, suggesting the cell cycle arrest by C/EBPbeta. In fact, a DNA cell cycle histogram revealed that the C/EBPbeta overexpression caused accumulation of cells in the G0/G1 fraction. Among cell cycle factors, microarray and real-time RT-PCR analyses have identified the cyclin-dependent kinase inhibitor p57(Kip2) as the transcriptional target of C/EBPbeta. p57(Kip2) was co-localized with C/EBPbeta in late proliferative and pre-hypertrophic chondrocytes of the mouse growth plate, which was decreased by the C/EBPbeta deficiency. Luciferase-reporter and electrophoretic mobility shift assays identified the core responsive element of C/EBPbeta in the p57(Kip2) promoter between -150 and -130 bp region containing a putative C/EBP motif. The knockdown of p57(Kip2) by the siRNA inhibited the C/EBPbeta-induced chondrocyte hypertrophy. Finally, when we created the experimental osteoarthritis model by inducing instability in the knee joints of adult mice of wild-type and C/EBPbeta+/- littermates, the C/EBPbeta insufficiency caused resistance to joint cartilage destruction. CONCLUSIONS/SIGNIFICANCE: C/EBPbeta transactivates p57(Kip2) to promote transition from proliferation to hypertrophic differentiation of chondrocytes during endochondral ossification, suggesting that the C/EBPbeta-p57(Kip2) signal would be a therapeutic target of skeletal disorders like growth retardation and osteoarthritis

    Language development after cochlear implantation: an epigenetic model

    Get PDF
    Growing evidence supports the notion that dynamic gene expression, subject to epigenetic control, organizes multiple influences to enable a child to learn to listen and to talk. Here, we review neurobiological and genetic influences on spoken language development in the context of results of a longitudinal trial of cochlear implantation of young children with severe to profound sensorineural hearing loss in the Childhood Development after Cochlear Implantation study. We specifically examine the results of cochlear implantation in participants who were congenitally deaf (N = 116). Prior to intervention, these participants were subject to naturally imposed constraints in sensory (acoustic–phonologic) inputs during critical phases of development when spoken language skills are typically achieved rapidly. Their candidacy for a cochlear implant was prompted by delays (n = 20) or an essential absence of spoken language acquisition (n = 96). Observations thus present an opportunity to evaluate the impact of factors that influence the emergence of spoken language, particularly in the context of hearing restoration in sensitive periods for language acquisition. Outcomes demonstrate considerable variation in spoken language learning, although significant advantages exist for the congenitally deaf children implanted prior to 18 months of age. While age at implantation carries high predictive value in forecasting performance on measures of spoken language, several factors show significant association, particularly those related to parent–child interactions. Importantly, the significance of environmental variables in their predictive value for language development varies with age at implantation. These observations are considered in the context of an epigenetic model in which dynamic genomic expression can modulate aspects of auditory learning, offering insights into factors that can influence a child’s acquisition of spoken language after cochlear implantation. Increased understanding of these interactions could lead to targeted interventions that interact with the epigenome to influence language outcomes with intervention, particularly in periods in which development is subject to time-sensitive experience

    Gastrointestinal decontamination in the acutely poisoned patient

    Get PDF
    ObjectiveTo define the role of gastrointestinal (GI) decontamination of the poisoned patient.Data sourcesA computer-based PubMed/MEDLINE search of the literature on GI decontamination in the poisoned patient with cross referencing of sources.Study selection and data extractionClinical, animal and in vitro studies were reviewed for clinical relevance to GI decontamination of the poisoned patient.Data synthesisThe literature suggests that previously, widely used, aggressive approaches including the use of ipecac syrup, gastric lavage, and cathartics are now rarely recommended. Whole bowel irrigation is still often recommended for slow-release drugs, metals, and patients who "pack" or "stuff" foreign bodies filled with drugs of abuse, but with little quality data to support it. Activated charcoal (AC), single or multiple doses, was also a previous mainstay of GI decontamination, but the utility of AC is now recognized to be limited and more time dependent than previously practiced. These recommendations have resulted in several treatment guidelines that are mostly based on retrospective analysis, animal studies or small case series, and rarely based on randomized clinical trials.ConclusionsThe current literature supports limited use of GI decontamination of the poisoned patient

    A mathematical model of mechanotransduction reveals how mechanical memory regulates mesenchymal stem cell fate decisions

    Get PDF
    Abstract Background Mechanical and biophysical properties of the cellular microenvironment regulate cell fate decisions. Mesenchymal stem cell (MSC) fate is influenced by past mechanical dosing (memory), but the mechanisms underlying this process have not yet been well defined. We have yet to understand how memory affects specific cell fate decisions, such as the differentiation of MSCs into neurons, adipocytes, myocytes, and osteoblasts. Results We study a minimal gene regulatory network permissive of multi-lineage MSC differentiation into four cell fates. We present a continuous model that is able to describe the cell fate transitions that occur during differentiation, and analyze its dynamics with tools from multistability, bifurcation, and cell fate landscape analysis, and via stochastic simulation. Whereas experimentally, memory has only been observed during osteogenic differentiation, this model predicts that memory regions can exist for each of the four MSC-derived cell lineages. We can predict the substrate stiffness ranges over which memory drives differentiation; these are directly testable in an experimental setting. Furthermore, we quantitatively predict how substrate stiffness and culture duration co-regulate the fate of a stem cell, and we find that the feedbacks from the differentiating MSC onto its substrate are critical to preserve mechanical memory. Strikingly, we show that re-seeding MSCs onto a sufficiently soft substrate increases the number of cell fates accessible. Conclusions Control of MSC differentiation is crucial for the success of much-lauded regenerative therapies based on MSCs. We have predicted new memory regions that will directly impact this control, and have quantified the size of the memory region for osteoblasts, as well as the co-regulatory effects on cell fates of substrate stiffness and culture duration. Taken together, these results can be used to develop novel strategies to better control the fates of MSCs in vitro and following transplantation
    corecore