1,520 research outputs found
VIP: An Experiment to Search for a Violation of the Pauli Exclusion Principle
The Pauli Exclusion Principle is a basic principle of Quantum Mechanics, and
its validity has never been seriously challenged. However, given its
fundamental standing, it is very important to check it as thoroughly as
possible. Here we describe the VIP (VIolation of the Pauli exclusion principle)
experiment, an improved version of the Ramberg and Snow experiment (E. Ramberg
and G. Snow, {\it Phys. Lett. B} {\bf 238}, 438 (1990)); VIP has just completed
the installation at the Gran Sasso underground laboratory, and aims to test the
Pauli Exclusion Principle for electrons with unprecedented accuracy, down to
. We report preliminary experimental
results and briefly discuss some of the implications of a possible violation.Comment: Plenary talk presented by E. Milotti at Meson 2006, Cracow, 9-13 June
200
The nature of phenotypic variation in Pavlovian conditioning
Pavlovian conditioning procedures result in dramatic individual differences in the topography of learnt behaviors in rats: When the temporary insertion of a lever into an operant chamber is paired with food pellets, some rats (known as sign-trackers) predominantly interact with the lever, while others (known as goal-trackers) predominantly approach the food well. Two experiments examined the sensitivity of these two behaviors to changing reinforcement contingencies in groups of males and female rats exhibiting the different phenotypes (i.e., sign-trackers and goal-trackers). In both phenotypes, behavior oriented to the food well was more sensitive to contingency changes (e.g., a reversal in which of two levers was reinforced) than was lever-oriented behavior. That is, the nature of the two behaviors differed independently of the rats in which they were manifest. These results indicate that the behavioral phenotypes reflect the parallel operation of a stimulus-stimulus associative process that gives rise to food-well activity and a stimulus-response process that gives rise to leveroriented activity, rather than the operation of a single process (e.g., stimulus-stimulus) that generates both behaviors
The walking robots critical position of the kinematics or dynamic systems applied on the environment model
© 2018 Authors. The exposure is dedicated in the first to mathematical modeling of the environment where the aspects on the walking robots evolution models are described. The environment's mathematical model is defined through the models of kinematics or dynamic systems in the general case of systems that depend on parameters. The important property of the dynamic system evolution models that approach the phenomenon from the environment is property of separation between stable and unstable regions from the free parameters domain of the system. Some mathematical conditions that imply the separation of stable regions from the free parameters domain of the system are formulated. In the second part is described our idea on walking robot kinematics and dynamic models with aspects exemplified on walking robot leg. An inverse method for identification of possible critical positions of the walking robot leg is established
Shedding New Light on Kaon-Nucleon/Nuclei Interaction and Its Astrophysical Implications with the AMADEUS Experiment at DAFNE
The AMADEUS experiment deals with the investigation of the low-energy
kaon-nuclei hadronic interaction at the DA{\Phi}NE collider at LNF-INFN, which
is fundamental to respond longstanding questions in the non-perturbative QCD
strangeness sector. The antikaon-nucleon potential is investigated searching
for signals from possible bound kaonic clusters, which would open the
possibility for the formation of cold dense baryonic matter. The confirmation
of this scenario may imply a fundamental role of strangeness in astrophysics.
AMADEUS step 0 consisted in the reanalysis of 2004/2005 KLOE dataset,
exploiting K- absorptions in H, 4He, 9Be and 12C in the setup materials. In
this paper, together with a review on the multi-nucleon K- absorption and the
particle identification procedure, the first results on the {\Sigma}0-p channel
will be presented including a statistical analysis on the possible accomodation
of a deeply bound stateComment: 6 pages, 2 figure, 1 table, HADRON 2015 conferenc
New experimental limit on Pauli Exclusion Principle violation by electrons (the VIP experiment)
The Pauli exclusion principle (PEP) represents one of the basic principles of
modern physics and, even if there are no compelling reasons to doubt its
validity, it still spurs a lively debate, because an intuitive, elementary
explanation is still missing, and because of its unique stand among the basic
symmetries of physics. A new limit on the probability that PEP is violated by
electrons was estabilished by the VIP (VIolation of the Pauli exclusion
principle) Collaboration, using the method of searching for PEP forbidden
atomic transitions in copper. The preliminary value, {1/2}\beta^{2} \textless
4.5\times 10^{-28}, represents an improvement of about two orders of magnitude
of the previous limit. The goal of VIP is to push this limit at the level of
.Comment: submitted to Journal of Physics: Conference Series, by the Institute
of Physic
High sensitivity tests of the Pauli Exclusion Principle with VIP2
The Pauli Exclusion Principle is one of the most fundamental rules of nature
and represents a pillar of modern physics. According to many observations the
Pauli Exclusion Principle must be extremely well fulfilled. Nevertheless,
numerous experimental investigations were performed to search for a small
violation of this principle. The VIP experiment at the Gran Sasso underground
laboratory searched for Pauli-forbidden X-ray transitions in copper atoms using
the Ramberg-Snow method and obtained the best limit so far. The follow-up
experiment VIP2 is designed to reach even higher sensitivity. It aims to
improve the limit by VIP by orders of magnitude. The experimental method,
comparison of different PEP tests based on different assumptions and the
developments for VIP2 are presented.Comment: 6 pages, 3 figures, Proceedings DISCRETE2014 Conferenc
Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS
The AMADEUS experiment aims to provide unique quality data of hadronic
interactions in light nuclear targets, in order to solve fundamental open
questions in the non-perturbative strangeness QCD sector, like the
controversial nature of the state, the yield of hyperon
formation below threshold, the yield and shape of multi-nucleon
absorption, processes which are intimately connected to the possible existence
of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the
DANE collider, which provides a unique source of monochromatic
low-momentum kaons and exploits the KLOE detector as an active target, in order
to obtain excellent acceptance and resolution data for nuclear capture on
H, He, Be and C, both at-rest and in-flight. During the
second half of 2012 a successful data taking was performed with a dedicated
pure carbon target implemented in the central region of KLOE, providing a high
statistic sample of pure at-rest nuclear interactions. For the future
dedicated setups involving cryogenic gaseous targets are under preparation.Comment: 14 pages, 6 figure
Measurement of the neutron detection efficiency of a 80% absorber - 20% scintillating fibers calorimeter
The neutron detection efficiency of a sampling calorimeter made of 1 mm
diameter scintillating fibers embedded in a lead/bismuth structure has been
measured at the neutron beam of the The Svedberg Laboratory at Uppsala. A
significant enhancement of the detection efficiency with respect to a bulk
organic scintillator detector with the same thickness is observed.Comment: 10 pages, 7 figure
- …
