77 research outputs found
What You See Is What You Get? Exclusion Performances in Ravens and Keas
BACKGROUND:Among birds, corvids and parrots are prime candidates for advanced cognitive abilities. Still, hardly anything is known about cognitive similarities and dissimilarities between them. Recently, exclusion has gained increasing interest in comparative cognition. To select the correct option in an exclusion task, one option has to be rejected (or excluded) and the correct option may be inferred, which raises the possibility that causal understanding is involved. However, little is yet known about its evolutionary history, as only few species, and mainly mammals, have been studied. METHODOLOGY/PRINCIPAL FINDINGS:We tested ravens and keas in a choice task requiring the search for food in two differently shaped tubes. We provided the birds with partial information about the content of one of the two tubes and asked whether they could use this information to infer the location of the hidden food and adjust their searching behaviour accordingly. Additionally, this setup allowed us to investigate whether the birds would appreciate the impact of the shape of the tubes on the visibility of food. The keas chose the baited tube more often than the ravens. However, the ravens applied the more efficient strategy, choosing by exclusion more frequently than the keas. An additional experiment confirmed this, indicating that ravens and keas either differ in their cognitive skills or that they apply them differently. CONCLUSION:To our knowledge, this is the first study to demonstrate that corvids and parrots may perform differently in cognitive tasks, highlighting the potential impact of different selection pressures on the cognitive evolution of these large-brained birds
The Telomere Binding Protein TRF2 Induces Chromatin Compaction
Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE) studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures
Toxoplasma gondii: 1908-2008, homage to Nicolle, Manceaux and Splendore
The discovery of Toxoplasma gondii independently by Nicolle and
Manceaux (1908) and Splendore (1908) was to open a
“Pandora’s Box” that has led research on this
parasite into a number of scientific disciplines. In the 100 years
since its discovery, the mystery surrounding T. gondii and its
inter-relationship with humans has continued to provide a stimulating
source of material in many areas of research, resulting in the
publication of almost 20,000 papers and a number of books. This flood
of diverse information shows no sign of abating, with an average of 10
papers per week appearing in PubMed. Herein, it is impossible to do
more than provide a very superficial comment on what has become a
massive body of scientific information. T. gondii has many unique
features and seems to be the “exception to almost every
rule” thus acting as a focus for research in disciplines from
epidemiology to immunology to human behaviour to cell biology to human
disease. In this review a number of the historical advances will be
mentioned and combined with a description of the basic biology of the
parasite
Cryptosporidium parvum rhomboid1 has an activity in microneme protein CpGP900 cleavage
Quantitative MRI findings indicate diffuse white matter damage in Susac Syndrome
Background Susac Syndrome (SuS) is an autoimmune endotheliopathy impacting the brain, retina and cochlea that can clinically mimic multiple sclerosis (MS). Objective To evaluate non-lesional white matter demyelination changes in SuS compared to MS and healthy controls (HC) using quantitative MRI. Methods 3T MRI including myelin water imaging and diffusion basis spectrum imaging were acquired for 7 SuS, 10 MS and 10 HC participants. Non-lesional white matter was analyzed in the corpus callosum (CC) and normal appearing white matter (NAWM). Groups were compared using ANCOVA with Tukey correction. Results SuS CC myelin water fraction (mean 0.092) was lower than MS(0.11, p = 0.01) and HC(0.11, p = 0.04). Another myelin marker, radial diffusivity, was increased in SuS CC(0.27μm2/ms) compared to HC(0.21μm2/ms, p = 0.008) and MS(0.23μm2/ms, p = 0.05). Fractional anisotropy was lower in SuS CC(0.82) than HC(0.86, p = 0.04). Fiber fraction (reflecting axons) did not differ from HC or MS. In NAWM, radial diffusivity and apparent diffusion coefficient were significantly increased in SuS compared to HC(p < 0.001 for both measures) and MS(p = 0.003, p < 0.001 respectively). Conclusions Our results provided evidence of myelin damage in SuS, particularly in the CC, and more extensive microstructural injury in NAWM, supporting the hypothesis that there are widespread microstructural changes in SuS syndrome including diffuse demyelination. </jats:sec
Clinical pharmacology of cytotoxic drugs in neonates and infants: providing evidence-based dosing guidance
Scattering of wave packets with phases
A general problem of 2→Nf scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3+1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σp/⟨p⟩ as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed
Assessing cellular energy dysfunction in CFS/ME using a commercially available laboratory test
- …
