375 research outputs found
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
An integrative approach to prioritize candidate causal genes for complex traits in cattle
Genome-wide association studies (GWAS) have identified many quantitative trait loci (QTL) associated with complex traits, predominantly in non-coding regions, posing challenges in pinpointing the causal variants and their target genes. Three types of evidence can help identify the gene through which QTL acts: (1) proximity to the most significant GWAS variant, (2) correlation of gene expression with the trait, and (3) the gene’s physiological role in the trait. However, there is still uncertainty about the success of these methods in identifying the correct genes. Here, we test the ability of these methods in a comparatively simple series of traits associated with the concentration of polar lipids in milk. We conducted single-trait GWAS for ~14 million imputed variants and 56 individual milk polar lipid (PL) phenotypes in 336 cows. A multi-trait meta-analysis of GWAS identified 10,063 significant SNPs at FDR≤10% (P≤7.15E-5). Transcriptome data from blood (~12.5K genes, 143 cows) and mammary tissue (~12.2K genes, 169 cows) were analyzed using the genetic score omics regression (GSOR) method. This method links observed gene expression to genetically predicted phenotypes and was used to find associations between gene expression and 56 PL phenotypes. GSOR identified 2,186 genes in blood and 1,404 in mammary tissue associated with at least one PL phenotype (FDR≤1%). We partitioned the genome into non-overlapping windows of 100 Kb to test for overlap between GSOR-identified genes and GWAS signals. We found a significant overlap between these two datasets, indicating that GSOR-significant genes were more likely to be located within 100 Kb windows that include GWAS signals than those that do not (P=0.01; odds ratio=1.47). These windows included 70 significant genes expressed in mammary tissue and 95 in blood. Compared to all expressed genes in each tissue, these genes were enriched for lipid metabolism gene ontology (GO). That is, seven of the 70 significant mammary transcriptome genes (P<0.01; odds ratio=3.98) and five of the 95 significant blood genes (P<0.10; odds ratio=2.24) were involved in lipid metabolism GO. The candidate causal genes include DGAT1, ACSM5, SERINC5, ABHD3, CYP2U1, PIGL, ARV1, SMPD5, and NPC2, with some overlap between the two tissues. The overlap between GWAS, GSOR, and GO analyses suggests that together, these methods are more likely to identify genes mediating QTL, though their power remains limited, as reflected by modest odds ratios. Larger sample sizes would enhance the power of these analyses, but issues like linkage disequilibrium would remain.fals
Estimation of Ligament Loading and Anterior Tibial Translation in Healthy and ACL-Deficient Knees During Gait and the Influence of Increasing Tibial Slope Using EMG-Driven Approach
The purpose of this study was to develop a biomechanical model to estimate anterior tibial translation (ATT), anterior shear forces, and ligament loading in the healthy and anterior cruciate ligament (ACL)-deficient knee joint during gait. This model used electromyography (EMG), joint position, and force plate data as inputs to calculate ligament loading during stance phase. First, an EMG-driven model was used to calculate forces for the major muscles crossing the knee joint. The calculated muscle forces were used as inputs to a knee model that incorporated a knee–ligament model in order to solve for ATT and ligament forces. The model took advantage of using EMGs as inputs, and could account for the abnormal muscle activation patterns of ACL-deficient gait. We validated our model by comparing the calculated results with previous in vitro, in vivo, and numerical studies of healthy and ACL-deficient knees, and this gave us confidence on the accuracy of our model calculations. Our model predicted that ATT increased throughout stance phase for the ACL-deficient knee compared with the healthy knee. The medial collateral ligament functioned as the main passive restraint to anterior shear force in the ACL-deficient knee. Although strong co-contraction of knee flexors was found to help restrain ATT in the ACL-deficient knee, it did not counteract the effect of ACL rupture. Posterior inclination angle of the tibial plateau was found to be a crucial parameter in determining knee mechanics, and increasing the tibial slope inclination in our model would increase the resulting ATT and ligament forces in both healthy and ACL-deficient knees
The effects of socioeconomic status, accessibility to services and patient type on hospital use in Western Australia: a retrospective cohort study of patients with homogenous health status
BACKGROUND: This study aimed to investigate groups of patients with a relatively homogenous health status to evaluate the degree to which use of the Australian hospital system is affected by socio-economic status, locational accessibility to services and patient payment classification. METHOD: Records of all deaths occurring in Western Australia from 1997 to 2000 inclusive were extracted from the WA mortality register and linked to records from the hospital morbidity data system (HMDS) via the WA Data Linkage System. Adjusted incidence rate ratios of hospitalisation in the last, second and third years prior to death were modelled separately for five underlying causes of death. RESULTS: The independent effects of socioeconomic status on hospital utilisation differed markedly across cause of death. Locational accessibility was generally not an independent predictor of utilisation except in those dying from ischaemic heart disease and lung cancer. Private patient status did not globally affect utilisation across all causes of death, but was associated with significantly decreased utilisation three years prior to death for those who died of colorectal, lung or breast cancer, and increased utilisation in the last year of life in those who died of colorectal cancer or cerebrovascular disease. CONCLUSION: It appears that the Australian hospital system may not be equitable since equal need did not equate to equal utilisation. Further it would appear that horizontal equity, as measured by equal utilisation for equal need, varies by disease. This implies that a 'one-size-fits-all' approach to further improvements in equity may be over simplistic. Thus initiatives beyond Medicare should be devised and evaluated in relation to specific areas of service provision
The relationship between literacy and multimorbidity in a primary care setting
<p>Abstract</p> <p>Background</p> <p>Multimorbidity is now acknowledged as a research priority in primary care. The identification of risk factors and people most at risk is an important step in guiding prevention and intervention strategies. The aim of this study was to examine the relationship between literacy and multimorbidity while controlling for potential confounders.</p> <p>Methods</p> <p>Participants were adult patients attending the family medicine clinic of a regional health centre in Saguenay (Quebec), Canada. Literacy was measured with the Newest Vital Sign (NVS). Multimorbidity was measured with the Disease Burden Morbidity Assessment (DBMA) by self-report. Information on potential confounders (age, sex, education and family income) was also collected. The association between literacy (independent variable) and multimorbidity was examined in bivariate and multivariate analyses. Two operational definitions of multimorbidity were used successively as the dependent variable; confounding variables were introduced into the model as potential predictors.</p> <p>Results</p> <p>One hundred three patients (36 men) 19–83 years old were recruited; 41.8% had completed 12 years of school or less. Forty-seven percent of patients provided fewer than four correct answers on the NVS (possible low literacy) whereas 53% had four correct responses or more. Literacy and multimorbidity were associated in bivariate analyses (p < 0.01) but not in multivariate analyses, including age and family income.</p> <p>Conclusion</p> <p>This study suggests that there is no relationship between literacy and multimorbidity when controlling for age and family income.</p
Exploiting biological priors and sequence variants enhances QTL discovery and genomic prediction of complex traits
Putative enhancer sites in the bovine genome are enriched with variants affecting complex traits
- …
