102 research outputs found

    Fibroblasts Close a Void in Free Space by a Purse-String Mechanism

    No full text
    The mechanism by which stromal cells fill voids in injured tissue remains a fundamental question in regenerative medicine. While it is well-established that fibroblasts fill voids by depositing extracellular matrix (ECM) proteins as they migrate toward the wound site, little is known about their ability to adopt an epithelial-like purse-string behavior. To investigate fibroblast behavior during gap closure, we created an artificial wound with a large void space. We discovered that fibroblasts could form a freestanding bridge over deep microvoids, closing the void via purse string contraction, a mechanism previously thought to be unique to epithelial wound closure. The findings also revealed that myosin II mediated contractility and intercellular adherent junctions were required for the closure of the fibroblast gap in our fabricated threedimensional artificial wound. To fulfill their repair function under the specific microenvironmental conditions of wounds, fibroblasts appeared to acquire the structural features of epithelial cells, namely, contractile actin bundles that span over multiple cells along the boundary. These findings shed light on a novel mechanism by which stromal cells bridge the 3D gap during physiological processes such as morphogenesis and wound healing.N

    Fibroblasts close a void in free space by a purse-string mechanism

    Full text link
    AbstractHow stromal cells fill voids in wounded tissue remains one of the most fundamental questions in regenerative medicine. Fibroblasts are known to fill voids by depositing extracellular matrix (ECM) proteins while migrating towards the wound site; however, their ability to adopt an epithelial-like purse-string behaviour remains unexplored. Here, we fabricated an artificial wound with a deep void space to investigate fibroblasts’ behaviour during gap closure. We found that fibroblasts can form a free-standing bridge on deep microvoids and consequently close the void through the purse-string contraction, which was previously believed to be exclusively an epithelial wound closure mechanism. The results also revealed that the fibroblast gap closure in our fabricated 3D artificial wound depends on myosin II-mediated contractility and intercellular adherent junctions. Our study reveals that stromal cells can gain the structural features of epithelial cells, namely, intercellular contractile rings, to fulfil their functions under the specific microenvironmental conditions of tissue repair. Furthermore, fibroblasts can close artificial wounds with gap widths up to 300 μm, approximately twice as large as the critical epithelial gap closure size on non-adherent substrates. Fibroblasts exhibited a zip-up gap closure mechanism with a geometrical size effect. These findings reveal a new mechanism for gap closure by stromal cells during wound healing and pave a way to groundbreaking therapeutic strategies for tissue repair.</jats:p

    COVID-19 vaccine guidance for patients with cancer participating in oncology clinical trials

    No full text
    Emerging efficacy data have led to the emergency use authorization or approval of COVID-19 vaccines in several countries worldwide. Most trials of COVID-19 vaccines excluded patients with active malignancies, and thus data on the safety, tolerability and efficacy of the vaccines in patients with cancer are currently limited. Given the risk posed by the COVID-19 pandemic, decisions regarding the use of vaccines against COVID-19 in patients participating in trials of investigational anticancer therapies need to be addressed promptly. Patients should not have to choose between enrolling on oncology clinical trials and receiving a COVID-19 vaccine. Clinical trial sponsors, investigators and treating physicians need operational guidance on COVID-19 vaccination for patients with cancer who are currently enrolled or might seek to enrol in clinical trials. Considering the high morbidity and mortality from COVID-19 in patients with cancer, the benefits of vaccination are likely to far outweigh the risks of vaccine-related adverse events. Herein, we provide operational COVID-19 vaccine guidance for patients participating in oncology clinical trials. In our perspective, continued quality oncological care requires that patients with cancer, including those involved in trials, be prioritized for COVID-19 vaccination, which should not affect trial eligibility
    corecore