744 research outputs found
Recommended from our members
Photoactivated biological processes as quantum measurements.
We outline a framework for describing photoactivated biological reactions as generalized quantum measurements of external fields, for which the biological system takes on the role of a quantum meter. By using general arguments regarding the Hamiltonian that describes the measurement interaction, we identify the cases where it is essential for a complex chemical or biological system to exhibit nonequilibrium quantum coherent dynamics in order to achieve the requisite functionality. We illustrate the analysis by considering measurement of the solar radiation field in photosynthesis and measurement of the earth's magnetic field in avian magnetoreception
Dynamics of Quantum Dot Nuclear Spin Polarization Controlled by a Single Electron
We present an experimental study of the dynamics underlying the buildup and
decay of dynamical nuclear spin polarization in a single semiconductor quantum
dot. Our experiment shows that the nuclei can be polarized on a time scale of a
few milliseconds, while their decay dynamics depends drastically on external
parameters. We show that a single electron can very efficiently depolarize the
nuclear spins and discuss two processes that can cause this depolarization.
Conversely, in the absence of a quantum dot electron, the lifetime of nuclear
spin polarization is on the time scale of a second, most likely limited by the
non-secular terms of the nuclear dipole-dipole interaction. We can further
suppress this depolarization rate by 1-2 orders of magnitude by applying an
external magnetic field exceeding 1 mT.Comment: 5 pages, 3 figure
Effective cross-Kerr nonlinearity and robust phase gates with trapped ions
We derive an effective Hamiltonian that describes a cross-Kerr type
interaction in a system involving a two-level trapped ion coupled to the
quantized field inside a cavity. We assume a large detuning between the ion and
field (dispersive limit) and this results in an interaction Hamiltonian
involving the product of the (bosonic) ionic vibrational motion and field
number operators. We also demonstrate the feasibility of operation of a phase
gate based on our hamiltonian. The gate is insensitive to spontaneous emission,
an important feature for the practical implementation of quantum computing.Comment: Included discussion of faster gates (Lamb-Dicke regime), Corrected
typos, and Added reference
Frequency down conversion through Bose condensation of light
We propose an experimental set up allowing to convert an input light of
wavelengths about into an output light of a lower frequency. The
basic principle of operating relies on the nonlinear optical properties
exhibited by a microcavity filled with glass. The light inside this material
behaves like a 2D interacting Bose gas susceptible to thermalise and create a
quasi-condensate. Extension of this setup to a photonic bandgap material (fiber
grating) allows the light to behave like a 3D Bose gas leading, after
thermalisation, to the formation of a Bose condensate. Theoretical estimations
show that a conversion of into is achieved with an input
pulse of about with a peak power of , using a fiber grating
containing an integrated cavity of size about .Comment: 4 pages, 1 figure
The quantum optical Josephson interferometer
The interplay between coherent tunnel coupling and on-site interactions in
dissipation-free bosonic systems has lead to many spectacular observations,
ranging from the demonstration of number-phase uncertainty relation to quantum
phase transitions. To explore the effect of dissipation and coherent drive on
tunnel coupled interacting bosonic systems, we propose a device that is the
quantum optical analog of a Josephson interferometer. It consists of two
coherently driven linear optical cavities connected via a central cavity with a
single-photon nonlinearity. The Josephson-like oscillations in the light
emitted from the central cavity as a function of the phase difference between
two pumping fields can be suppressed by increasing the strength of the
nonlinear coupling. Remarkably, we find that in the limit of ultra-strong
interactions in the center-cavity, the coupled system maps on to an effective
Jaynes-Cummings system with a nonlinearity determined by the tunnel coupling
strength. In the limit of a single nonlinear cavity coupled to two linear
waveguides, the degree of photon antibunching from the nonlinear cavity
provides an excellent measure of the transition to the nonlinear regime where
Josephson oscillations are suppressed.Comment: 9 pages, 7 figure
- …
