400 research outputs found

    Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation

    Get PDF
    Previous studies have shown that exogenous ATP (>1µM) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PPi). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2Pi). Addition of 0.5U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≤25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≥0.5U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PPi-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation

    Baryon charge from embedding topology and a continuous meson spectrum in a new holographic gauge theory

    Full text link
    We study a new holographic gauge theory based on probe D4-branes in the background dual to D4-branes on a circle with antiperiodic boundary conditions for fermions. Field theory configurations with baryons correspond to smooth embeddings of the probe D4-branes with nontrivial winding around an S^4 in the geometry. As a consequence, physics of baryons and nuclei can be studied reliably in this model using the abelian Born-Infeld action. However, surprisingly, we find that the meson spectrum is not discrete. This is related to a curious result that the action governing small fluctuations of the gauge field on the probe brane is the five-dimensional Maxwell action in Minkowski space despite the non-trivial embedding of the probe brane in the curved background geometry.Comment: 24 pages, LaTeX, 10 figures, v4: previously ignored effects of coupling to RR-fields included, meson spectrum qualitatively changed, v5: journal versio

    Automated multi-objective calibration of biological agent-based simulations

    Get PDF
    Computational agent-based simulation (ABS) is increasingly used to complement laboratory techniques in advancing our understanding of biological systems. Calibration, the identification of parameter values that align simulation with biological behaviours, becomes challenging as increasingly complex biological domains are simulated. Complex domains cannot be characterized by single metrics alone, rendering simulation calibration a fundamentally multi-metric optimization problem that typical calibration techniques cannot handle. Yet calibration is an essential activity in simulation-based science; the baseline calibration forms a control for subsequent experimentation and hence is fundamental in the interpretation of results. Here, we develop and showcase a method, built around multi-objective optimization, for calibrating ABSs against complex target behaviours requiring several metrics (termed objectives) to characterize. Multi-objective calibration (MOC) delivers those sets of parameter values representing optimal trade-offs in simulation performance against each metric, in the form of a Pareto front. We use MOC to calibrate a well-understood immunological simulation against both established a priori and previously unestablished target behaviours. Furthermore, we show that simulation-borne conclusions are broadly, but not entirely, robust to adopting baseline parameter values from different extremes of the Pareto front, highlighting the importance of MOC's identification of numerous calibration solutions. We devise a method for detecting overfitting in a multi-objective context, not previously possible, used to save computational effort by terminating MOC when no improved solutions will be found. MOC can significantly impact biological simulation, adding rigour to and speeding up an otherwise time-consuming calibration process and highlighting inappropriate biological capture by simulations that cannot be well calibrated. As such, it produces more accurate simulations that generate more informative biological predictions

    The chaperone protein clusterin may serve as a cerebrospinal fluid biomarker for chronic spinal cord disorders in the dog

    Get PDF
    Chronic spinal cord dysfunction occurs in dogs as a consequence of diverse aetiologies, including long-standing spinal cord compression and insidious neurodegenerative conditions. One such neurodegenerative condition is canine degenerative myelopathy (DM), which clinically is a challenge to differentiate from other chronic spinal cord conditions. Although the clinical diagnosis of DM can be strengthened by the identification of the Sod1 mutations that are observed in affected dogs, genetic analysis alone is insufficient to provide a definitive diagnosis. There is a requirement to identify biomarkers that can differentiate conditions with a similar clinical presentation, thus facilitating patient diagnostic and management strategies. A comparison of the cerebrospinal fluid (CSF) protein gel electrophoresis profile between idiopathic epilepsy (IE) and DM identified a protein band that was more prominent in DM. This band was subsequently found to contain a multifunctional protein clusterin (apolipoprotein J) that is protective against endoplasmic reticulum (ER) stress-mediated apoptosis, oxidative stress, and also serves as an extracellular chaperone influencing protein aggregation. Western blot analysis of CSF clusterin confirmed elevated levels in DM compared to IE (p &#60; 0.05). Analysis of spinal cord tissue from DM and control material found that clusterin expression was evident in neurons and that the clusterin mRNA levels from tissue extracts were elevated in DM compared to the control. The plasma clusterin levels was comparable between these groups. However, a comparison of clusterin CSF levels in a number of neurological conditions found that clusterin was elevated in both DM and chronic intervertebral disc disease (cIVDD) but not in meningoencephalitis and IE. These findings indicate that clusterin may potentially serve as a marker for chronic spinal cord disease in the dog; however, additional markers are required to differentiate DM from a concurrent condition such as cIVDD

    A qualitative study of primary care clinicians' views of treating childhood obesity

    Get PDF
    Background: The prevalence of childhood obesity is rising and the UK Government have stated a commitment to addressing obesity in general. One method has been to include indicators relating to obesity within the GP pay-for-performance Quality and Outcomes Framework (QOF) contract. This study aimed to explore general practitioners' and practice nurses' views in relation to their role in treating childhood obesity. Methods: We interviewed eighteen practitioners (twelve GPs and six nurses) who worked in general practices contracting with Rotherham Primary Care Trust. Interviews were face to face and semi structured. The transcribed data were analysed using framework analysis. Results: GPs and practice nurses felt that their role was to raise the issue of a child's weight, but that ultimately obesity was a social and family problem. Time constraint, lack of training and lack of resources were identified as important barriers to addressing childhood obesity. There was concern that the clinician-patient relationship could be adversely affected by discussing what was often seen as a sensitive topic. GPs and practice nurses felt ill-equipped to tackle childhood obesity given the lack of evidence for effective interventions, and were sceptical that providing diet and exercise advice would have any impact upon a child's weight. Conclusion: GPs and practice nurses felt that their role in obesity management was centred upon raising the issue of a child's weight, and providing basic diet and exercise advice. Clinicians may find it difficult to make a significant impact on childhood obesity while the evidence base for effective management remains poor. Until the lack of effective interventions is addressed, implementing additional targets (for example through the QOF) may not be effective

    Homologous and heterologous desensitization of guanylyl cyclase-B signaling in GH3 somatolactotropes

    Get PDF
    The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders

    Structured medical electives:a concept whose time has come?

    Get PDF
    Background: Most international electives in which medical students from high-income countries travel abroad are largely unstructured, and can lead to problematic outcomes for students as well as sending and receiving institutions. We analyse the problems of unstructured medical electives and describe the benefits of an elective experience that includes more organisation and oversight from the sending medical school.Results: A number of structured elective programmes have been developed, including those at the Medical School for International Health, Israel and the University of Dundee, United Kingdom. These programmes provide significant pre-departure training in global health and the ethical dimensions of electives, support and monitoring during the elective, and post-elective debrief. Crucially, the programmes themselves are developed on the basis of long-term engagement between institutions, and have an element of reciprocity. We further identify two major problems in current medical electives: the different ethical contexts in which electives take place, and the problem of 'voluntourism', in which the primary beneficiary of the activity is the medical student, rather than the receiving institution or health system. These two issues should be seen in the light of unequal relations between sending and receiving institutions, which largely mirror unequal relations between the Global North and South.Conclusion: We argue that more structured elective programmes could form a useful corrective to some of the problems identified with medical electives. We recommend that medical schools in countries such as the UK strongly consider developing these types of programmes, and if this is not possible, they should seek to further develop their pre-departure training curricula.</p

    Obesity and pronated foot type may increase the risk of chronic plantar heel pain : a matched case-control study

    Get PDF
    Background : Chronic plantar heel pain (CPHP) is one of the most common musculoskeletal disorders of the foot, yet its aetiology is poorly understood. The purpose of this study was to examine the association between CPHP and a number of commonly hypothesised causative factors.Methods : Eighty participants with CPHP (33 males, 47 females, mean age 52.3 years, S.D. 11.7) were matched by age (&plusmn; 2 years) and sex to 80 control participants (33 males, 47 females, mean age 51.9 years, S.D. 11.8). The two groups were then compared on body mass index (BMI), foot posture as measured by the Foot Posture Index (FPI), ankle dorsiflexion range of motion (ROM) as measured by the Dorsiflexion Lunge Test, occupational lower limb stress using the Occupational Rating Scale and calf endurance using the Standing Heel Rise Test.Results : Univariate analysis demonstrated that the CPHP group had significantly greater BMI (29.8 &plusmn; 5.4 kg/m2 vs. 27.5 &plusmn; 4.9 kg/m2; P &lt; 0.01), a more pronated foot posture (FPI score 2.4 &plusmn; 3.3 vs. 1.1 &plusmn; 2.3; P &lt; 0.01) and greater ankle dorsiflexion ROM (45.1 &plusmn; 7.1&deg; vs. 40.5 &plusmn; 6.6&deg;; P &lt; 0.01) than the control group. No difference was identified between the groups for calf endurance or time spent sitting, standing, walking on uneven ground, squatting, climbing or lifting. Multivariate logistic regression revealed that those with CPHP were more likely to be obese (BMI &ge; 30 kg/m2) (OR 2.9, 95% CI 1.4 &ndash; 6.1, P &lt; 0.01) and to have a pronated foot posture (FPI &ge; 4) (OR 3.7, 95% CI 1.6 &ndash; 8.7, P &lt; 0.01).Conclusion : Obesity and pronated foot posture are associated with CPHP and may be risk factors for the development of the condition. Decreased ankle dorsiflexion, calf endurance and occupational lower limb stress may not play a role in CPHP.<br /

    Natriuretic peptide activation of extracellular regulated kinase 1/2 (ERK1/2) pathway by particulate guanylyl cyclases in GH3 somatolactotropes.

    Get PDF
    The natriuretic peptides, Atrial-, B-type and C-type natriuretric peptides (ANP, BNP, CNP), are regulators of many endocrine tissues and exert their effects predominantly through the activation of their specific guanylyl cyclase receptors (GC-A and GC-B) to generate cGMP. Whereas cGMP-independent signalling has been reported in response to natriuretic peptides, this is mediated via either the clearance receptor (Npr-C) or a renal-specific NPR-Bi isoform, which both lack intrinsic guanylyl cyclase activity. Here, we report evidence of GC-B-dependent cGMP-independent signalling in pituitary GH3 cells. Stimulation of GH3 cells with CNP resulted in a rapid and sustained enhancement of ERK1/2 phosphorylation (P-ERK1/2), an effect that was not mimicked by dibutryl-cGMP. Furthermore, CNP-stimulated P-ERK1/2 occurred at concentrations below that required for cGMP accumulation. The effect of CNP on P-ERK1/2 was sensitive to pharmacological blockade of MEK (U0126) and Src kinases (PP2). Silencing of the GC-B1 and GC-B2 splice variants of the GC-B receptor by using targeted short interfering RNAs completely blocked the CNP effects on P-ERK1/2. CNP failed to alter GH3 cell proliferation or cell cycle distribution but caused a concentration-dependent increase in the activity of the human glycoprotein α-subunit promoter (αGSU) in a MEK-dependent manner. Finally, CNP also activated the p38 and JNK MAPK pathways in GH3 cells. These findings reveal an additional mechanism of GC-B signalling and suggest additional biological roles for CNP in its target tissues
    corecore