1,037 research outputs found

    Modeling the development of pronunciation in infant speech acquisition.

    Get PDF
    Pronunciation is an important part of speech acquisition, but little attention has been given to the mechanism or mechanisms by which it develops. Speech sound qualities, for example, have just been assumed to develop by simple imitation. In most accounts this is then assumed to be by acoustic matching, with the infant comparing his output to that of his caregiver. There are theoretical and empirical problems with both of these assumptions, and we present a computational model- Elija-that does not learn to pronounce speech sounds this way. Elija starts by exploring the sound making capabilities of his vocal apparatus. Then he uses the natural responses he gets from a caregiver to learn equivalence relations between his vocal actions and his caregiver's speech. We show that Elija progresses from a babbling stage to learning the names of objects. This demonstrates the viability of a non-imitative mechanism in learning to pronounce

    Active lead-in variability affects motor memory formation and slows motor learning

    Get PDF
    Rapid learning can be critical to ensure elite performance in a changing world or to recover basic movement after neural injuries. Recently it was shown that the variability of follow-through movements afects the rate of motor memory formation. Here we investigate if lead-in movement has a similar efect on learning rate. We hypothesized that both modality and variability of lead-in movement would play critical roles, with simulations suggesting that only changes in active lead-in variability would exhibit slower learning. We tested this experimentally using a two-movement paradigm, with either visual or active initial lead-in movements preceeding a second movement performed in a force feld. As predicted, increasing active lead-in variability reduced the rate of motor adaptation, whereas changes in visual lead-in variability had little efect. This demonstrates that distinct neural tuning activity is induced by diferent lead-in modalities, subsequently infuencing the access to, and switching between, distinct motor memories

    The effect of contextual cues on the encoding of motor memories.

    Get PDF
    Several studies have shown that sensory contextual cues can reduce the interference observed during learning of opposing force fields. However, because each study examined a small set of cues, often in a unique paradigm, the relative efficacy of different sensory contextual cues is unclear. In the present study we quantify how seven contextual cues, some investigated previously and some novel, affect the formation and recall of motor memories. Subjects made movements in a velocity-dependent curl field, with direction varying randomly from trial to trial but always associated with a unique contextual cue. Linking field direction to the cursor or background color, or to peripheral visual motion cues, did not reduce interference. In contrast, the orientation of a visual object attached to the hand cursor significantly reduced interference, albeit by a small amount. When the fields were associated with movement in different locations in the workspace, a substantial reduction in interference was observed. We tested whether this reduction in interference was due to the different locations of the visual feedback (targets and cursor) or the movements (proprioceptive). When the fields were associated only with changes in visual display location (movements always made centrally) or only with changes in the movement location (visual feedback always displayed centrally), a substantial reduction in interference was observed. These results show that although some visual cues can lead to the formation and recall of distinct representations in motor memory, changes in spatial visual and proprioceptive states of the movement are far more effective than changes in simple visual contextual cues

    Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs.

    Get PDF
    Humans are able to adapt their motor commands to make accurate movements in novel sensorimotor environments, such as when wielding tools that alter limb dynamics. However, it is unclear to what extent sensorimotor representations, obtained through experience with one limb, are available to the opposite, untrained limb and in which form they are available. Here, we compared crosslimb transfer of force-field compensation after participants adapted to a velocity-dependent curl field, oriented either in the sagittal or the transverse plane. Due to the mirror symmetry of the limbs, the force field had identical effects for both limbs in joint and extrinsic coordinates in the sagittal plane but conflicting joint-based effects in the transverse plane. The degree of force-field compensation exhibited by the opposite arm in probe trials immediately after initial learning was significantly greater after sagittal (26 ± 5%) than transverse plane adaptation (9 ± 4%; P < 0.001), irrespective of whether participants learned initially with the left or the right arm or via abrupt or gradual exposure to the force field. Thus transfer was impaired when the orientation of imposed dynamics conflicted in intrinsic coordinates for the two limbs. The data reveal that neural representations of novel dynamics are only partially available to the opposite limb, since transfer is incomplete even when force-field perturbation is spatially compatible for the two limbs, according to both intrinsic and extrinsic coordinates.Support for this work was provided by the Australian Research Council (Grant DP1093193), Trinity College, Wellcome Trust, Human Frontier Science Program, and Royal Society Noreen Murray Professorship in Neurobiology (to D. M. Wolpert).This is the final version of the article. It first appeared from the American Physiological Society via http://dx.doi.org/10.1152/jn.00485.201

    Adaptive tuning functions arise from visual observation of past movement

    Get PDF
    Visual observation of movement plays a key role in action. For example, tennis players have little time to react to the ball, but still need to prepare the appropriate stroke. Therefore, it might be useful to use visual information about the ball trajectory to recall a specific motor memory. Past visual observation of movement (as well as passive and active arm movement) affects the learning and recall of motor memories. Moreover, when passive or active, these past contextual movements exhibit generalization (or tuning) across movement directions. Here we extend this work, examining whether visual motion also exhibits similar generalization across movement directions and whether such generalization functions can explain patterns of interference. Both the adaptation movement and contextual movement exhibited generalization beyond the training direction, with the visual contextual motion exhibiting much broader tuning. A second experiment demonstrated that this pattern was consistent with the results of an interference experiment where opposing force fields were associated with two separate visual movements. Overall, our study shows that visual contextual motion exhibits much broader (and shallower) tuning functions than previously seen for either passive or active movements, demonstrating that the tuning characteristics of past motion are highly dependent on their sensory modality

    Two-level recognition of isolated word using neural nets

    Get PDF
    Describes a neural-net based isolated word recogniser that has a better performance on a standard multi-speaker database than the reference hidden Markov model recogniser. The complete neural net recogniser is formed from two parts: a front-end which transforms the complex acoustic specification of the speech into a simplified phonetic feature specification, and a whole-word discriminator net. Each level was trained separately, thus considerably reducing the time necessary to train the overall system

    Characterization of Neural Tuning: Visual Lead-in Movements Generalize in Speed and Distance

    Get PDF
    Prior work has shown that independent motor memories of opposing dynamics can be learned when the movements are preceded by unique lead-in movements, each associated with a different direction of dynamics. Here we examine generalization effects using visual lead-in movements. Specifically, we test how variations in lead-in kinematics, in terms of duration, speed and distance, effect the expression of the learned motor memory. We show that the motor system is more strongly affected by changes in the duration of the movement, whereas longer movement distances have no effect

    Composition and decomposition in bimanual dynamic learning.

    Get PDF
    Our ability to skillfully manipulate an object often involves the motor system learning to compensate for the dynamics of the object. When the two arms learn to manipulate a single object they can act cooperatively, whereas when they manipulate separate objects they control each object independently. We examined how learning transfers between these two bimanual contexts by applying force fields to the arms. In a coupled context, a single dynamic is shared between the arms, and in an uncoupled context separate dynamics are experienced independently by each arm. In a composition experiment, we found that when subjects had learned uncoupled force fields they were able to transfer to a coupled field that was the sum of the two fields. However, the contribution of each arm repartitioned over time so that, when they returned to the uncoupled fields, the error initially increased but rapidly reverted to the previous level. In a decomposition experiment, after subjects learned a coupled field, their error increased when exposed to uncoupled fields that were orthogonal components of the coupled field. However, when the coupled field was reintroduced, subjects rapidly readapted. These results suggest that the representations of dynamics for uncoupled and coupled contexts are partially independent. We found additional support for this hypothesis by showing significant learning of opposing curl fields when the context, coupled versus uncoupled, was alternated with the curl field direction. These results suggest that the motor system is able to use partially separate representations for dynamics of the two arms acting on a single object and two arms acting on separate objects

    Context-dependent partitioning of motor learning in bimanual movements.

    Get PDF
    Human subjects easily adapt to single dynamic or visuomotor perturbations. In contrast, when two opposing dynamic or visuomotor perturbations are presented sequentially, interference is often observed. We examined the effect of bimanual movement context on interference between opposing perturbations using pairs of contexts, in which the relative direction of movement between the two arms was different across the pair. When each perturbation direction was associated with a different bimanual context, such as movement of the arms in the same direction versus movement in the opposite direction, interference was dramatically reduced. This occurred over a short period of training and was seen for both dynamic and visuomotor perturbations, suggesting a partitioning of motor learning for the different bimanual contexts. Further support for this was found in a series of transfer experiments. Having learned a single dynamic or visuomotor perturbation in one bimanual context, subjects showed incomplete transfer of this learning when the context changed, even though the perturbation remained the same. In addition, we examined a bimanual context in which one arm was moved passively and show that the reduction in interference requires active movement. The sensory consequences of movement are thus insufficient to allow opposing perturbations to be co-represented. Our results suggest different bimanual movement contexts engage at least partially separate representations of dynamics and kinematics in the motor system

    Collider and Dark Matter Searches in Models with Mixed Modulus-Anomaly Mediated SUSY Breaking

    Get PDF
    We investigate the phenomenology of supersymmetric models where moduli fields and the Weyl anomaly make comparable contributions to SUSY breaking effects in the observable sector of fields. This mixed modulus-anomaly mediated supersymmetry breaking (MM-AMSB) scenario is inspired by models of string compactification with fluxes, which have been shown to yield a de Sitter vacuum (as in the recent construction by Kachru {\it et al}). The phenomenology depends on the so-called modular weights which, in turn, depend on the location of various fields in the extra dimensions. We find that the model with zero modular weights gives mass spectra characterized by very light top squarks and/or tau sleptons, or where M_1\sim -M_2 so that the bino and wino are approximately degenerate. The top squark mass can be in the range required by successful electroweak baryogenesis. The measured relic density of cold dark matter can be obtained via top squark co-annihilation at low \tan\beta, tau slepton co-annihilation at large \tan\beta or via bino-wino coannihilation. Then, we typically find low rates for direct and indirect detection of neutralino dark matter. However, essentially all the WMAP-allowed parameter space can be probed by experiments at the CERN LHC, while significant portions may also be explored at an e^+e^- collider with \sqrt{s}=0.5--1 TeV. We also investigate a case with non-zero modular weights. In this case, co-annihilation, A-funnel annihilation and bulk annihilation of neutralinos are all allowed. Results for future colliders are qualitatively similar, but prospects for indirect dark matter searches via gamma rays and anti-particles are somewhat better.Comment: 38 pages including 22 EPS figures; latest version posted to conform with published versio
    corecore