58 research outputs found
Bacterial genotoxins induce T cell senescence
Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells—the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence
Vitamin E analogues as inducers of apoptosis: structure–function relation
Recent results show that alpha-tocopheryl succinate (alpha-TOS) is a proapoptotic agent with antineoplastic activity. As modifications of the vitamin E (VE) molecule may affect its apoptogenic activity, we tested a number of newly synthesised VE analogues using malignant cell lines. Analogues of alpha-TOS with lower number of methyl substitutions on the aromatic ring were less active than alpha-TOS. Replacement of the succinyl group with a maleyl group greatly enhanced the activity, while it was lower for the glutaryl esters. Methylation of the free succinyl carboxyl group on alpha-TOS and delta-TOS completely prevented the apoptogenic activity of the parent compounds. Both Trolox and its succinylated derivative were inactive. alpha-tocotrienol (alpha-T3 H) failed to induce apoptosis, while italic gamma-T3 H was apoptogenic, and more so when succinylated. Shortening the aliphatic side chain of italic gamma-T3 by one isoprenyl unit increased its activity. Neither phytyl nor oleyl succinate caused apoptosis. These findings show that modifications of different functional moieties of the VE molecule can enhance apoptogenic activity. It is hoped that these observations will lead to the synthesis of analogues with even higher apoptogenic and, consequently, antineoplastic efficacy.Full Tex
Sensitization of interferon-γ induced apoptosis in human osteosarcoma cells by extracellular S100A4
BACKGROUND: S100A4 is a small Ca(2+)-binding protein of the S100 family with metastasis-promoting properties. Recently, secreted S100A4 protein has been shown to possess a number of functions, including induction of angiogenesis, stimulation of cell motility and neurite extension. METHODS: Cell cultures from two human osteosarcoma cell lines, OHS and its anti-S100A4 ribozyme transfected counterpart II-11b, was treated with IFN-γ and recombinant S100A4 in order to study the sensitizing effects of extracellular S100A4 on IFN-γ mediated apoptosis. Induction of apoptosis was demonstrated by DNA fragmentation, cleavage of poly (ADP-ribose) polymerase and Lamin B. RESULTS: In the present work, we found that the S100A4-expressing human osteosarcoma cell line OHS was more sensitive to IFN-γ-mediated apoptosis than the II-11b cells. S100A4 protein was detected in conditioned medium from OHS cells, but not from II-11b cells, and addition of recombinant S100A4 to the cell medium sensitized II-11b cells to apoptosis induced by IFN-γ. The S100A4/IFN-γ-mediated induction of apoptosis was shown to be independent of caspase activation, but dependent on the formation of reactive oxygen species. Furthermore, addition of extracellular S100A4 was demonstrated to activate nuclear factor-κB (NF-κB). CONCLUSION: In conclusion, we have shown that S100A4 sensitizes osteosarcoma cells to IFN-γ-mediated induction of apoptosis. Additionally, extracellular S100A4 activates NF-κB, but whether these events are causally related remains unknown
Cathepsin-B and cathepsin-L expression levels do not correlate with sensitivity of tumour cells to TNF-α-mediated apoptosis
A phase II study of the vitamin D analogue Seocalcitol in patients with inoperable hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is a common malignant tumour, which has a poor prognosis. Surgical resection can be curative but most patients are inoperable and most chemotherapy agents have minimal activity in this disease. Seocalcitol, a vitamin D analogue, induces differentiation and inhibits growth in cancer cell lines and in vivo. The vitamin D receptor is expressed in hepatocytes and more abundantly in HCC cells. In total, 56 patients with inoperable advanced HCC were included in an uncontrolled study of oral Seocalcitol treatment for up to 1 year ( with possible extension for responders). The dose was titrated according to serum calcium levels. The treatment effect was evaluated by regular CT scans. Out of 33 patients evaluable for tumour response, two had complete response (CR), 12 stable disease and 19 progressive disease. The CRs appeared after 6 and 24 months of treatment, and lasted for 29 and at least 36 months ( patient still in remission when data censored). Seocalcitol was well tolerated; the most frequent toxicity was hypercalcaemia and related symptoms. Most patients tolerated a daily dose of 10 mug of Seocalcitol. This is the first study showing activity, by reduction in tumour dimensions, of a differentiating agent in patients with an advanced bulky, solid tumour. Seocalcitol may have an effect in the treatment of HCC, especially in early disease when a prolonged treatment can be instituted. The survival benefit with or without tumour response should be determined in controlled studies
An antagonist of retinoic acid receptors more effectively inhibits growth of human prostate cancer cells than normal prostate epithelium
CD40L induces multidrug resistance to apoptosis in breast carcinoma and lymphoma cells through caspase independent and dependent pathways
BACKGROUND: CD40L was found to reduce doxorubicin-induced apoptosis in non Hodgkin's lymphoma cell lines through caspase-3 dependent mechanism. Whether this represents a general mechanism for other tumor types is unknown. METHODS: The resistance induced by CD40L against apoptosis induced by a panel of cytotoxic chemotherapeutic drugs in non Hodgkin's lymphoma and breast carcinoma cell lines was investigated. RESULTS: Doxorubicin, cisplatyl, etoposide, vinblastin and paclitaxel increased apoptosis in a dose-dependent manner in breast carcinoma as well as in non Hodgkin's lymphoma cell lines. Co-culture with irradiated L cells expressing CD40L significantly reduced the percentage of apoptotic cells in breast carcinoma and non Hodgkin's lymphoma cell lines treated with these drugs. In breast carcinoma cell lines, these 5 drugs induced an inconsistent increase of caspase-3/7 activity, while in non Hodgkin's lymphoma cell lines all 5 drugs increased caspase-3/7 activity up to 28-fold above baseline. Co-culture with CD40L L cells reduced (-39% to -89%) the activation of caspase-3/7 induced by these agents in all 5 non Hodgkin's lymphoma cell lines, but in none of the 2 breast carcinoma cell lines. Co culture with CD40L L cells also blocked the apoptosis induced by exogenous ceramides in breast carcinoma and non Hodgkin's lymphoma cell lines through a caspase-3-like, 8-like and 9-like dependent pathways. CONCLUSION: These results indicate that CD40L expressed on adjacent non tumoral cells induces multidrug resistance to cytotoxic agents and ceramides in both breast carcinoma and non Hodgkin's lymphoma cell lines, albeit through a caspase independent and dependent pathway respectively
Evaluating Inhibitory Effects of Paclitaxel and Vitamin D3 Loaded Poly Lactic Glycolic Acid Co-Delivery Nanoparticles on the Breast Cancer Cell Line
- …
