10 research outputs found
Symptoms in Swiss adolescents in relation to exposure from fixed site transmitters: a prospective cohort study
Electromagnetic Field Effect or Simply Stress? Effects of UMTS Exposure on Hippocampal Longterm Plasticity in the Context of Procedure Related Hormone Release
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded
39 Heliport proximity is crucial in reducing treatment delay in patients with st-elevation myocardial infarction transported by helicopter – heliproxy study
Personal radio use and cancer risks among 48,158 British police officers and staff from the Airwave Health Monitoring Study
Background Radiofrequency electromagnetic fields (RF-EMF) from mobile phones have been classified as potentially carcinogenic. No study has investigated use of Terrestrial Trunked Radio (TETRA), a source of RF-EMF with wide occupational use, and cancer risks. Methods We investigated association of monthly personal radio use and risk of cancer using Cox proportional hazards regression among 48,518 police officers and staff of the Airwave Health Monitoring Study in Great Britain. Results During median follow-up of 5.9 years, 716 incident cancer cases were identified. Among users, the median of the average monthly duration of use in the year prior to enrolment was 30.5 min (inter-quartile range 8.1, 68.1). Overall, there was no association between personal radio use and risk of all cancers (hazard ratio [HR] = 0.98, 95% confidence interval [CI]: 0.93, 1.03). For head and neck cancers HR = 0.72 (95% CI: 0.30, 1.70) among personal radio users vs non-users, and among users it was 1.06 (95% CI: 0.91, 1.23) per doubling of minutes of personal radio use. Conclusions With the limited follow-up to date, we found no evidence of association of personal radio use with cancer risk. Continued follow-up of the cohort is warranted
Personal radio use and cancer risks among 48,518 British police officers and staff from the Airwave Health Monitoring Study
Human Inhalation Study with Zinc Oxide: Analysis of Zinc Levels and Biomarkers in Exhaled Breath Condensate
Short-term chamber exposure to low doses of two kinds of wood smoke does not induce systemic inflammation, coagulation or oxidative stress in healthy humans
INTRODUCTION: Air pollution increases the risk of cardiovascular diseases. A proposed mechanism is that local airway inflammation leads to systemic inflammation, affecting coagulation and the long-term risk of atherosclerosis. One major source of air pollution is wood burning. Here we investigate whether exposure to two kinds of wood smoke, previously shown to cause airway effects, affects biomarkers of systemic inflammation, coagulation and lipid peroxidation. METHODS: Thirteen healthy adults were exposed to filtered air followed by two sessions of wood smoke for three hours, one week apart. One session used smoke from the start-up phase of the wood-burning cycle, and the other smoke from the burn-out phase. Mean particle mass concentrations were 295 µg/m(3) and 146 µg/m(3), and number concentrations were 140 000/cm(3) and 100 000/cm(3), respectively. Biomarkers were analyzed in samples of blood and urine taken before and several times after exposure. Results after wood smoke exposure were adjusted for exposure to filtered air. RESULTS: Markers of systemic inflammation and soluble adhesion molecules did not increase after wood smoke exposure. Effects on markers of coagulation were ambiguous, with minor decreases in fibrinogen and platelet counts and mixed results concerning the coagulation factors VII and VIII. Urinary F(2)-isoprostane, a consistent marker of in vivo lipid peroxidation, unexpectedly decreased after wood smoke exposure. CONCLUSIONS: The effects on biomarkers of inflammation, coagulation and lipid peroxidation do not indicate an increased risk of cardiovascular diseases in healthy adults by short-term exposure to wood smoke at these moderate doses, previously shown to cause airway effects
