12 research outputs found

    Techno-Economic Aspects of Production, Storage and Distribution of Ammonia

    Get PDF
    The cost of green ammonia is determined primarily by its production cost, but it is also influenced by the cost of distribution and storage. Production costs are a function of plant location, size, and whether the plant is islanded or semi-islanded, that is whether the power source is variable renewable energy (VRE) or grid electricity. Capital costs for a green ammonia plant consist of equipment for the production of hydrogen (electrolyzer) and nitrogen (air separation), ammonia synthesis (Haber–Bosch, compressors and separators) and storage. Operating costs are mainly due to power consumption. The electrolyzer dominates both capital and operating costs in the manufacture of green ammonia. Ammonia is stored in either pressurized or refrigerated vessels with the latter preferred for large scale storage. Distribution of ammonia may involve several transport modes depending on the location of the production and consumption sites. Inland transport can involve pipelines, trains, and trucks, and offshore shipping is generally done with medium, large or very large gas carrier vessels with refrigerated tanks. A case study to supply a fleet of 36 ultralarge container vessels (ULCVs) operating between the ports of Shanghai and Rotterdam is used to exemplify the combination of production, storage and transportation costs

    Energy System Modelling in support of the Energy Transition

    No full text

    Device for treating particles in a rotating fluidized bed

    No full text
    Device for treating particles, which device comprises a vortex chamber defined by end walls at both ends ans a circular wall, a rotation imparting device comprising fluid feeding means arranged in a mainly tangential direction, a particle outlet and a central fluid outlet, which device further comprises an auxiliary chamber coaxially arranged with the vortex chamber defining a treating zone, which auxiliary chamber has a circular outer wall and an end wall and opens into the vortex chamber through an opening in the end wall of the vortex chamber opposite the central fluid outlet, a device for injecting particles coaxially into the treating zone, and a device for feeding a treating fluid into the treating zone in mainly axial direction, wherein the ratio of the area of the opening to the cross- sectional area of the vortex chamber is less than 0.50
    corecore